
 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

Introduction

Xbase++ has extended the capabilities of the language beyond what is available in
FoxPro and Clipper. For FoxPro developers and Clipper developers who are new to
Xbase++, there are new variable types and language concepts that can enhance the
programmer's ability to create more powerful and more supportable applications.

The flexibility of the Xbase++ language is what makes it possible to create libraries of
functions that can be used dynamically across multiple applications. The
preprocessor, code blocks, ragged arrays and objects combine to give the programmer
the ability to create their own language of commands and functions and all the
advantages of a 4th generation language.

This session will also show how these language concepts can be employed to create
3rd party add-on products to Xbase++ that will integrate seamlessly into Xbase++
applications.

The Xbase++ language in incredibly robust and it could take years to understand most
of its capabilities, however when migrating Clipper and FoxPro applications, it is not
necessary to know all of this. I have aided many Clipper and FoxPro developers with
the migration process over the years and I have found that only a basic introduction to
the following concepts are
necessary to get off to a great start:

* The Xbase++ Project. Creation of EXEs and DLLs.

* The compiler, linker and project builder .

* Console mode for quick migration of Clipper and Fox 2.6 apps.

* INIT and EXIT procedures, DBESYS, APPSYS and MAIN.

* The DBE (Database engine)

* LOCALS, STATICS, PRIVATE and PUBLIC variables.

* STATIC functions.

* New data types such as Code Blocks and Objects, also detached locals.

* The Reference operator, the Alias operator, and the Index operator.

* Multi-Dimensional arrays, including ragged arrays.

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

* The Pre-Processor and how to create your own commands.

* The Error Handler

When it is time to improve on the application and evolve it into a modern application,
then an introduction to the following concepts are necessary:

* Xbase Parts for GUI elements.

* Multi-threading and workspaces.

* Class creation and usage, including methods and instance variables.

* ActiveX.

* The graphics engine and owner-drawing.

* Understanding the garbage collector

If you are a Clipper programmer who has no experience with Xbase++, then some of
the material in this session will be familiar especially the structure of the Xbase
language. If you are a FoxPro programmer then very little will be familiar other than the
structure of the Xbase language, which will be very familiar. Language compatibility is
the reason that Xbase++ is the most natural migration path for Clipper and FoxPro
developers.

This seminar is based on the capabilities of Xbase++ 1.9 due to the fact that Xbase++
2.0 is not yet released. If you are a FoxPro programmer and need to migrate FoxPro
2.6 applications, then you do not need to wait for Xbase++ 2.0. Xbase++ 1.9 has
everything you need.

The Xbase++ SOURCE CODE files

Source code is contained in .PRG, .CH, .ARC and .XPJ files. PRG files contain the
source code for functions, procedures and classes. CH files contain the source code
for definitions and pre-processor directives. ARC files contain the source code for
resource files that contain .JPG, .BMP, cursors, etc. XPJ files contain the source for
the project builder that compiles and links the entire project.

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

The Xbase++ COMPILER

The COMPILER, XPP.EXE, converts Xbase++ source code into object (.OBJ) files
which are later linked together into .EXE or .DLL files. A compiled language has many
advantages over interpretive languages such as FoxPro. Interpreters cannot validate
code until runtime and therefore cannot insure that variables are typed correctly, that
the code syntax is correct or even that called functions exist. The compiler performs
the function of pre-processing
commands into executable expressions, insures that variables and database fields are
correctly typed and are not ambiguous, and provides other valuable
features that help the programmer to prevent coding mistakes and help the debugging
process. A compiled application runs much faster than an interpreted application.

Example:

XPP test.prg /c /l /p -> creates test.obj and test.ppo

The Xbase++ LINKER

The LINKER, ALINK.EXE, links all the .OBJ files of a project into an .EXE or .DLL file
that can run on 32-bit or 64-bit Windows operating systems. When a .DLL file is
created, a .LIB file of the same name as the .DLL file is also created.

Example:

ALINK test.obj, mylib.lib

The .LIB file consists only of a list of public functions and procedures that are
contained in the .DLL file. This file is then used to link the .DLL to other .EXEs or
.DLLs so that all .DLLs are automatically loaded when the .EXE is run. The Windows
.EXE loader dynamically links all function and procedure calls between .EXEs and
.DLLs at the time that they are loaded into memory. .EXEs and .DLLs are commonly
referred to as "runtime binaries" and are
necessary to be distributed with the application files. Source files, .OBJ files, .RES
files, .LIB files are not required to be distributed with the application. If, however, the
Xbase++ application is used by other programmers as a set of .DLLs which link to their
own application, then .LIB files are necessary.

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

The PROJECT file and PROJECT builder

The Xbase++ project builder (PBUILD.EXE) makes it simple to list all the files that
make up an application and create the end product which may consist of multiple
.EXEs and .DLLs. The source file is an .XPJ file that looks something like this:

[PROJECT]
 COMPILE = xpp
 COMPILE_FLAGS = /q /w
 DEBUG = yes
 GUI = yes
 LINKER = alink
 BUTTONTEST.XPJ

[BUTTONTEST.XPJ]
 BUTTONTEST.EXE
 BUTTONTEST.DLL

[BUTTONTEST.EXE]
 Buttontest.arc
 BUTTONTEST.PRG
 BUTTONS.LIB

[BUTTONS.DLL]
 BUTTONS.PRG
 DCLIPX.LIB

Example: PBUILD buttontest
 >> creates runtime binaries: BUTTONTEST.EXE, BUTTONS.DLL
 >> creates intermediates: BUTTONS.LIB, BUTTONS.RES,
BUTTONTEST.OBJ,
 BUTTONS.OBJ

The beauty of the Xbase++ project file is that intermediate dependencies are not
required to be listed for PBUILD to determine how to build the project. Only source files
and .LIB files need to be listed.

INIT, EXIT, APPSYS, DBESYS and MAIN procedures.

All Xbase++ apps must have a MAIN procedure, and APPSYS procedure and a
DBESYS procedure.

APPSYS - This procedure is the first one called and is used to set up application
parameters. If the programmer does not include an APPSYS procedure in his/her
source, then Xbase++ automatically uses a default APPSYS procedure which creates
and displays an XbpCrt() class object for use with text-based code such as Clipper and
Foxpro 2.6 code.

DBESYS - This procedure is the next one called and is used to load the database
engine(s) used in the application. This is where a connection to a database server

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

may be initiated or where other DBEs may be loaded. If the programmer does not
include a DBESYS procedure in his/her source, then Xbase++ automatically uses a
default DBESYS which loads the DBFNTX dbe for Clipper compatibility.

INIT - This procedure is the next one called and is optional. This is where initialization
code is called before calling the MAIN procedure.

MAIN - This procedure is the next one called and is the only one that is required. This
is the entry point for running the main application.

EXIT - This procedure is the last one called and is executed immediately after the
QUIT command or after returning from the MAIN procedure. This is the last exit point
for the application and is used for cleanup such as deleting files, disconnecting from a
database server, etc.

PUBLIC FUNCTIONS and STATIC FUNCTIONS

PUBLIC FUNCTIONS are callable from anywhere in the application and by any DLLs
loaded by the application. They are also callable from a macro because the function
name exists in the symbol table. There can be no duplicates of public functions in the
same EXE or DLL, however public function names can be duplicated in different DLLs.
This is undesirable however, because it can be ambiguous as to which function
actually is called in the application.

STATIC FUNCTIONS are callable only from functions that are in the same source file
as the STATIC function. They are also not callable from a macro because a STATIC
function does not exist in the symbol table. There can be no duplicates of static
functions in the same source file, however there can be an unlimited number of
duplicates within an application.

The DATABASE ENGINE (DBEs)

All database operations, i.e. dbSkip(), dbGoTop(), dbSetFilter(), RecNo(), etc. are
routed through the DBE layer of Xbase++. Xbase++ supports DBEs for FoxPro,
dBase, Clipper, Advantage Server, and ODBC databases. The database engine gives
the programmer the ability to write code that is independent of the database being
used. The default dbe is DBFNTX, which supports .DBF databases and .NTX indexes
(Clipper compatible).

DBESYS.PRG contains the source code for the default DbeSys() Procedure that is
automatically called before the Main() procedure.

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

**
* DbeSys() is always executed at program startup
**
PROCEDURE dbeSys()
/*
 * The lHidden parameter is set to .T. for all database engines
 * which will be combined to a new abstract database engine.
 */
LOCAL aDbes := { { "DBFDBE", .T.},;
 { "NTXDBE", .T.},;
 { "DELDBE", .F.},;
 { "SDFDBE", .F.} }
LOCAL aBuild :={ { "DBFNTX", 1, 2 } }
LOCAL i

 /*
 * Set the sorting order and the date format
 */
 SET COLLATION TO AMERICAN
 SET DATE TO AMERICAN

 /*
 * load all database engines
 */
 FOR i:= 1 TO len(aDbes)
 IF ! DbeLoad(aDbes[i][1], aDbes[i][2])
 Alert(aDbes[i][1] + MSG_DBE_NOT_LOADED , {"OK"})
 ENDIF
 NEXT i

 /*
 * create database engines
 */
 FOR i:= 1 TO len(aBuild)
 IF ! DbeBuild(aBuild[i][1], aDbes[aBuild[i][2]][1],
aDbes[aBuild[i][3]][1])
 Alert(aBuild[i][1] + MSG_DBE_NOT_CREATED , {"OK"})
 ENDIF
 NEXT i

RETURN

Selecting a Database engine is a simple as using the dbeSetDefault() function.

CONSOLE MODE

Xbase++ supports a non-gui console mode for migration of Clipper or FoxPro 2.6
applications. By default, console mode is always enabled via the AppSys() function
which is always called before Main(). APPSYS.PRG contains the default source code.

PROCEDURE AppSys()

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

#define DEF_ROWS 25
#define DEF_COLS 80
#define DEF_FONTHEIGHT 16
#define DEF_FONTWIDTH 8

LOCAL oCrt, nAppType := AppType(), aSizeDesktop, aPos

// Compute window position (center window on the Desktop)
aSizeDesktop := AppDesktop():currentSize()
aPos := { (aSizeDesktop[1]-(DEF_COLS * DEF_FONTWIDTH))
/2, ;
 (aSizeDesktop[2]-(DEF_ROWS * DEF_FONTHEIGHT)) /2
}

// Create XbpCRT object
oCrt := XbpCrt():New (NIL, NIL, aPos, DEF_ROWS, DEF_COLS)
oCrt:FontWidth := DEF_FONTWIDTH
oCrt:FontHeight := DEF_FONTHEIGHT
oCrt:title := AppName()
oCrt:FontName := "Alaska Crt"
oCrt:Create()

// Init Presentation Space
oCrt:PresSpace()

// XbpCrt gets active window and output device
SetAppWindow (oCrt)

RETURN

Console mode sends all legacy output such as ?, MENU TO, @..SAY, @..PROMPT,
SetColor(), etc. to the application window which is created from the XbpCrt() class.
This insures that most Clipper and FoxPro 2.6 legacy code will execute correctly and
display output to the console window.

The Xbase++ PRE-PROCESSOR

In my opinion, the pre-processor gets the "most valuable feature" award when it comes
to programmer productivity. This is because it provides the abstraction concepts
necessary to reduce the number of lines of code needed to create enterprise-level
applications. In fact, my product eXpress++ is only possible due to the pre-processor
and code blocks.

Look at this code example:

SELECT INTO BOISE NAME,PHONE WHERE ZIP="83706" ORDER BY PHONE

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

This is a classic SQL SELECT statement which simplifies a Query-based method of
data access and is why SQL is so popular a language.

Due to the fact that compiled languages really do not understand commands such as
this, the elements must be parsed into something that can be understood, and so there
must be a parser that would convert the command to a set of ordered parameters that
can be passed to a function or an object.

The SQL function input parameters may look something like this:

SQLSelect(aColumns, cWhere, cOrderBy, cInto)

If you were given the task of writing an SQL Query Parser you could use the Xbase++
pre-processor to accomplish this task.

#command SELECT [INTO <into>] <columns,...> [WHERE <where>] [ORDER BY
<order>];
 => SQLSelect({<(columns)>}, <(where)>, <(order)>, <(into)>)

The above SELECT statement would be converted to the following by the pre-processor during
the compile process:

SQLSelect({"NAME", "PHONE"}, 'ZIP="83706"', "PHONE", "BOISE")

Most Xbase++ commands are defined in STD.CH. Look at this file to get a better
understanding of how the pre-processor is used to create the Xbase++ command set.

LOCALS, STATICS, PRIVATES and PUBLICS

Variables are declared LOCAL or PRIVATE at the beginning of any function or
procedure. LOCAL variables are visible only within the function where declared.
PRIVATE variables are visible within the function where declared and all functions
called by the function where declared. LOCALS are not added to the symbol table,
therefore they cannot be used in macros or saved to an XPF memory file. LOCALS
should always be used instead of PRIVATES other than under special conditions. If a
called function needs access to a variable in the parent function, then the variable
should be passed.

All received parameters are always declared as LOCAL unless using the
PARAMETERS statement which assigns them as PRIVATE.

A variable can be declared PUBLIC anywhere in the application. PUBLIC variables
are also visible anywhere in the application.

A variable can be declared STATIC at the top of a source file or at the top of a
function. If it is declared at the top of the source file, then it is visible by all functions

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

declared in that source file. If it is declared at the top of the function, then it is visible
only within that function.

STATICs should be used with caution, because even though they have limited
visibility, they keep their value throughout the application and could become memory
hogs. STATICS should never be used as a method of passing values between
functions.

LOCAL variables should be used whenever possible, especially when writing functions
or classes that are reusable. This not only protects the value from being overwritten
but also they improve performance due to they are not stored in the symbol table.

LOCALS may even be used in functions that return a code block to be evaluated later.
Such LOCALS are referred to as "detached locals" because the exist after a function
ends and thus are detached from the declaring function. The LOCAL variable
references are removed from memory only after there are no more references to the
code block and they have all been destroyed.

Example of a detached local:

FUNCTION Main()

LOCAL bElapTime := ElapTime(), i

FOR i := 1 TO 10
 ? Eval(bElapTime)
 Sleep(50)
NEXT

WAIT

RETURN nil

* ---------

STATIC FUNCTION ElapTime()

LOCAL nSeconds := Seconds()

RETURN {||Seconds()-nSeconds}

All variable types may contain values of any data type, i.e. C,D,N,L,A,B or O.

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

The MACRO Operator

The MACRO (&) operator is basically a runtime compiler. It can compile and execute
any valid expression that contains PUBLIC functions, PUBLIC variables, PRIVATE
variables, DATABASE FIELDS, and PUBLIC or PRIVATE object iVars and Methods. It
will not work with strings that contain references to LOCAL or STATIC variables or
STATIC functions. A MACRO function can even be called with local variables.

Examples of VALID macros:

cString := 'MsgBox("The time is: " + Time())'
&(cString)

PRIVATE cTime := Time()
cString := 'MsgBox("The time is: " + cTime)'
&(cString)

PRIVATE oXbp := XbpStatic():new():create()
cString := 'oXbp:setCaption("Testing")'
&(cString)

LOCAL dDate := Date(), cTime := Time()
cString := "PostDateAndTime"
&(cString)(dDate,cTime)

Examples of INVALID macros:

LOCAL cTime := Time()
cString := 'MsgBox("The time is: " + cTime)'
&(cString)

STATIC soXbp
soXbp := XbpStatic():new():create()
cString := 'soXbp:setCaption("Testing")'
&(cString)

ARRAYS

Arrays in Xbase++ are virtually unlimited in size and capability. Arrays can contain any
data type and may have a multiple dimensions. Arraysare defined in a variety of ways
and can be manipulated with a variety of functions.

Declaring an array can be done in several ways:

1. LOCAL aArray := {} // creates an empty array

2. LOCAL aArray[10] // creates an array of 10 elements

3. LOCAL aArray[5,6] // creates a 2 dimensional array of 30 elements

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

4. LOCAL aArray[10,10,10] // creates a 3 dimensional array of 1000
elements

5. LOCAL aArray := Array(10,10,10) // same as above

Arrays are manipulated with functions like AAdd(), ADel(), AIns(), ARemove().
Any element of an array can be any data type including another array.

Arrays are simply pointers to areas of memory, therefore many pointers can
point to the same array and manipulate or access the same data. When an array
is passed to another function, only the pointer is passed, not the array
contents. This allows the function to change the contents of the original
array in the calling function.

Arrays can be "ragged" with any type of non-symmetrical structure.

Examples:

// ragged array
aArray := { 1, Date(), Time, { 3,4,5 }, .f., {||Directory()} }

// load a 2-dimensional array with the contents of a disk folder.
aDir := Directory()

The INDEX Operator

The INDEX Operators [] are used to access an array element or a string character.

Example 1 : aArray[2,3] returns a pointer to the 3rd element of the 2nd array
element of aArray.

Example 2 : cString[10] returns the value of the 10th character of cString.

The REFERENCE operator

The REFERENCE operator (@) is used to pass a value by reference rather than by
value. Basically, this means that a pointer to a variable in memory is being passed
rather than the contents of the variable. All objects and array are automatically passed
by reference, therefore the @ symbol is not required.

Examples:

LOCAL dDate := Date()

GetDate(@dDate)

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

? dDate

The function GetDate() can change the value of dDate which will then change the
value in the calling function.

The reference operator can even be used with database fields and object iVars.

The ALIAS operator

The ALIAS (->) operator is used with database operations to connect a field name or
expression to a specified database. This reduces code and insures that a database
work area is selected for a specified operation. If the ALIAS operator is NOT used,
then the programmer risks that an operation may be performed on a wrong database
work area.

Examples:

// without Alias operator
SELECT customer
DO WHILE !Eof()
 ? cust_nmbr
 dbSkip()
ENDDO
CLOSE

SELECT invoice
DO WHILE !Eof()
 ? inv_nmbr
 dbSkip()
ENDDO
CLOSE

// with Alias operator
DO WHILE !customer->(Eof())
 customer->(dbSkip())
 ? customer->cust_nmbr
ENDDO
customer->(dbCloseArea())

invoice->(dbSkip())
DO WHILE !invoice->(Eof())
 ? invoice->inv_nmbr
 invoice->(dbSkip())
ENDDO
invoice->(dbCloseArea())

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

CODE BLOCKS

The code block is one of the most powerful data types of Xbase++ because it is used
to store a snippet of code that can be executed at any later time using the Eval()
function. This is much more powerful than using a Macro because it can store a
comma-delimeted list of expressions to evaluate and can be passed an unlimited
number of parameters. The return value of the last expression is the value returned
from Eval(). Unlike macros, code blocks can contain references to LOCAL and STATIC
variables and STATIC functions. Code blocks can be stored in arrays or memory
variables and can even be saved to disk using Var2bin().

Example 1 :

bEval := {|a,b,c|c := a+b, c += 20, c}

n := Eval(bEval, 3,6)
? n // displays 29

Example 2: aEval := { {||MyFunc1()}, {||MyFunc2()}, {||MyFunc3()} }
bEval := aEval[2]
Eval(bEval) // Runs MyFunc2()

ERROR HANDLING

ERRORSYS.PRG contains the source for the default error handler in Xbase++. The
function ErrorSys() is automatically called on startup before the Main() function.

* Install default error code block

PROCEDURE ErrorSys()
 ErrorBlock({|o| StandardEH(o)})
RETURN

The function ErrorBlock() is used to post a code block that is evaluated every time
there is a runtime error. By default this will call StandardEH() and pass it the Error()
object. Many times it is necessary to trap runtime errors so they will not be displayed
by the standard error handler but will give the user a more friendly error message or
even an opportunity to retry. The below example uses BEGIN SEQUENCE ..
RECOVER .. END SEQUENCE .. LOOP to recover from an error. For FoxPro
developers, this is similar to TRY .. CATCH .. RECOVER.

In the example, the UDF DbfNtxUse() opens a DBF file and its index files. The
information for creating the index files is passed in an array. When an index file does
not exist, a runtime error occurs and the function Break() branches out of the error

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

block to the RECOVER statement and passes an error object to it. After RECOVER,
the missing index file is created.

 #include "Error.ch"

 PROCEDURE Main

 LOCAL aIndexFiles

 aIndexFiles := ;
 { ;
 { "CUSTOMRA", "CUSTNR" }, ;
 { "CUSTOMRB", "Upper(LAST_NAME + FIRST_NAME)" }, ;
 { "CUSTOMRC", "ZIP" } ;
 }

 DbfNtxUse("CUSTOMER", aIndexFiles)

 RETURN

 PROCEDURE DbfNtxUse(cDbfFile, aIndexFiles)
 LOCAL n, nMax, bSaveErrorBlock, oError, cIndexFile, cIndexKey

 USE (cDbfFile) NEW // Open DBF file

 n := 1
 nMax := Len(aIndexFiles)

 // Define error block
 bSaveErrorBlock := ErrorBlock({|e| Break(e)})

 DO WHILE n <= nMax

 BEGIN SEQUENCE // Get index data
 cIndexFile := aIndexFiles[n,1]
 cIndexKey := aIndexFiles[n,2]
 OrdListAdd(cIndexFile) // Open index file
 n++

 RECOVER USING oError

 IF oError:osCode == 2 // Error: file does not exist

 USE (cDbfFile) EXCLUSIVE // open DBF file exclusively

 INDEX ON &cIndexKey ; // create index file
 TO &cIndexFile

 USE (cDbfFile) // Open file SHARED without
 // index files
 n := 1
 LOOP // Back to BEGIN SEQUENCE
 ENDIF

 END SEQUENCE

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

 ENDDO

 ErrorBlock(bSaveErrorBlock) // Restore old error code block

 RETURN

CLASSES

Xbase++ is capable of creating and using source code in an object-oriented style. this
includes the declaration of classes and the instantiation of classes. Below is an
example of a very simple class that contains a few iVars and methods. This class is
used to create and write to a text file.

* Declaration of the class

#include "fileio.ch"
CLASS textfile

EXPORTED:
VAR handle
VAR pointer
METHOD init, close, write

ENDCLASS

METHOD textfile:init(cFileName)
IF !Empty(cFileName)
 IF FExists(cFileName)
 ::handle := FOpen(cFileName, FO_WRITE)
 ELSE
 ::handle := FCreate(cFileName)
 ENDIF
 ::pointer := FSeek(::handle,0,FS_END)
ELSE
 ::pointer := 0
 ::handle := 0
ENDIF
RETURN self

METHOD textfile:close()
FClose(::handle)
RETURN self

METHOD textfile:write(cText)
IF !Empty(cText)
 FWrite(::handle, cText + Chr(13) + Chr(10))
 ::pointer := FSeek(::handle,0,FS_END)
ENDIF

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

RETURN self

* --------

* Instantiation and usage of the class

FUNCTION Main()

LOCAL oText,i

oText := TextFile():new('MyText.Txt')
IF oText:handle > 0
 FOR i := 1 TO 20
 oText:write('This is line ' + Alltrim(Str(i)))
 ? oText:pointer
 NEXT
 oText:close()
ENDIF
wait

RETURN nil

XBASE PARTS

Xbase Parts is the terminology that Alaska Software uses to describe a set of GUI
controls that are used to create robust GUI applications. Xbase Parts are all classes
that start with Xbp*.

Examples:

XbpDialog() // Create the main Dialog window for an application
or window.
XbpPushButton() // Create a pushbutton
XbpBrowse() // Create a columnar browse listing of an array or
database.
XbpMenu() // Create a submenu or menu item
XbpTabPage() // Create a Tab Page

.. many more

Sample code:

#include "appevent.ch"

FUNCTION Main()

LOCAL oDlg, oButton, nEvent := 0, mp1, mp2, oXbp

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

oDlg := XbpDialog():new(AppDeskTop(),,{ 100,100 }, { 400,400 })
oDlg:title := 'My Window'
oDlg:create()

oButton := XbpPushButton():new(oDlg:drawingArea,, {50,50}, {300,280}
)
oButton:caption := 'Push Me!'
oButton:activate := {||MsgBox('I have been pushed!')}
oButton:create()
oButton:setFontCompoundName('36.Arial Bold')

// Need event loop to process all events
DO WHILE nEvent # xbeP_Close
 nEvent := AppEvent(@mp1, @mp2, @oXbp, .1)
 IF nEvent > 0
 oXbp:handleEvent(nEvent, mp1, mp2)
 ENDIF
ENDDO

RETURN nil

* -------

PROC appsys ; return

MULTI-THREADING

Xbase++ can execute code in multiple threads, simultaneously. Look at the below
code. You can run this code by building THREAD.XPJ and then running
THREAD.EXE. Note how the messages from the threads are interlaced indicating that
they are running simultaneously.

FUNCTION Main()

LOCAL oThread, lThread1Active := .f., lThread2Active := .f.

oThread := Thread():new()
Sleep(5)
oThread:start({||ThreadLoop(@lThread1Active)})

oThread := Thread():new()
Sleep(5)
oThread:start({||ThreadLoop(@lThread2Active)})

DO WHILE lThread1Active .OR. lThread2Active
 Sleep(1)
ENDDO

RETURN

* ---------

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

STATIC FUNCTION ThreadLoop(lActive)

LOCAL i

lActive := .t.

FOR i := 1 TO 5
 ? 'I am running in thread ' + Alltrim(Str(ThreadId()))
 Sleep(50)
NEXT

USE xtest
XTEST->(dbGoTo(ThreadID()*2))

i := 0
DO WHILE i++ < 5 .AND. !XTEST->(Eof())
 ? 'I am record number ' + Alltrim(Str(XTEST->(RecNo()))) + ' in
thread ' + ;
 Alltrim(Str(ThreadId()))
 XTEST->(dbSkip())
 Sleep(50)
ENDDO

XTest->(dbCloseArea())
lActive := .f.

RETURN nil

Each thread also contains a workspace in which up to 65,000 database aliases may be
opened. The workspace in a thread is not affected by database operations in other
threads, making the workspace "thread-safe".

Look at the above code. Note how the same database can be opened in 2 different
threads and be accessing different records.

ACTIVEX (COM and OCX controls)

Xbase++ supports all third-party ActiveX controls. ActiveX controls that have a visual
component (OCX) are usually handled by the XbpActiveXControl() class. Here is an
example of code that creates a Web Browser using the ActiveX control that is part of
Internet Explorer. The CLSID for this control is "Shell.Explorer".

#Pragma Library("ASCOM10.LIB")
#include "appevent.ch"

FUNCTION Main()

LOCAL oDlg, oWebBrowser, nEvent := 0, mp1, mp2, oXbp

oDlg := XbpDialog():new(AppDeskTop(),,{200,200},{700,500})

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

oDlg:title := 'Alaska Software'
oDlg:resize :=
{||oWebBrowser:setSize(oDlg:drawingArea:currentSize())}

oWebBrowser := XbpActiveXControl():new(oDlg:drawingArea,,
 {0,0},oDlg:drawingArea:currentSize())

oWebBrowser:clsId := 'Shell.Explorer'
oWebBrowser:create()
oWebBrower:navigate('http://alaska-software.com')

DO WHILE nEvent # xbeP_Close
 nEvent := AppEvent(@mp1,@mp2,@oXbp,1)
 IF nEvent > 0
 oXbp:handleEvent(nEvent,mp1,mp2)
 ENDIF
ENDDO

RETURN nil

PROC appsys ; RETURN

In FoxPro there is a very easy way to export records into MS-Excel like:

COPY FIELDS cust_name, zip, address to c:\testing TYPE XLS

The below code shows how to create this functionality using the preprocessor to create
the command and CreateObject() to connect to Excel.

#Pragma Library("ASCOM10.LIB")

#command COPY TO <(file)> TYPE XLS ;
 [FIELDS <flds,...>] ;
 [FOR <for>] ;
 [WHILE <whl>] ;
 [NEXT <nxt>] ;
 [RECORD <rcd>] ;
 [<rst: REST>] ;
 [VIA <dbe>] ;
 [ALL] ;
=> _dbExport('C:\Temp\ExcelData', {<(flds)>}, __EBCB(<for>),
__EBCB(<whl>),<nxt>, <rcd>, <.rst.>, <dbe>) ;
 ;M->_oExcel := CreateObject("Excel.Application");
 ;M->_oExcel:DisplayAlerts:=.f.;
 ;M->_oBook:= M->_oExcel:workbooks:Open('C:\temp\ExcelData.dbf');
 ;M->_oBook:SaveAs(<(file)>+".xls", -4143);
 ;M->_oExcel:Quit();
 ;M->_oExcel:Destroy();
 ;Ferase('C:\temp\'ExcelData.Dbf')

* Usage of the COPY TO .. TYPE XLS command
FUNCTION Main()

USE customer VIA "FOXCDX"

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

COPY TO Customer TYPE XLS // This will end up in
C:\Users\<login>\Documents
COPY TO (CurDrive() + ":\" +CurDir() + "\Customer") TYPE XLS
 // This will end up in current directory

RETURN nil

The GRAPHICS engine

Xbase++ supports a robust set of graphic functions. These functions start with Gra*()
and can be used to paint graphs, images, gradients, etc. in a window or on any
Xbase++ control that supports "owner-drawing".

Here is a sample program that uses Gra functions to draw a gradient background on a
custom static object:

FUNCTION Main()

LOCAL oDlg, oStaticG, oStatic, nEvent, mp1, mp2, oXbp

oDlg := XbpDialog():new(AppDeskTop(),,{200,200},{200,200})
oDlg:title := 'Gradient Static'
oDlg:create()

oStaticG :=
GradientStatic():new(oDlg:drawingArea,,{0,0},oDlg:drawingArea:current
Size())
oStaticG:color := {100,0,0} // red
oStaticG:gradientStep := 2
oStaticG:create()

oStatic := XbpStatic():new(oStaticG,,{30,80},{180,20})
oStatic:caption := 'Gradient'
oStatic:setFontCompoundName('18.Lucida Console Bold')
oStatic:setColorBG(XBPSYSCLR_TRANSPARENT)
oStatic:create()

nEvent := 0
DO WHILE nEvent # xbeP_Close
 nEvent := AppEvent(@mp1,@mp2,@oXbp,1)
 IF nEvent > 0
 oXbp:handleEvent(nEvent,mp1,mp2)
 ENDIF
ENDDO

RETURN nil

* --------------

CLASS GradientStatic FROM XbpStatic

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

EXPORTED:

VAR gradientStep
VAR color

* ----------

INLINE METHOD Init(a,b,c,d,e,f,g,h)

::gradientStep := 1
::color := { 0,100,0 } // green
::XbpStatic:init(a,b,c,d,e,f,g,h)
::XbpStatic:drawMode := XBP_DRAW_OWNER

RETURN self

* ----------

INLINE METHOD Create(a,b,c,d,e,f,g,h)

::XbpStatic:create(a,b,c,d,e,f,g,h)

RETURN self

* -----------

INLINE METHOD Draw(oPS, aInfo)

LOCAL aColors, i, nHeight := ::currentSize()[2]
LOCAL aStartPos := {aInfo[4][1],aInfo[4][2]}
LOCAL aEndPos := {aInfo[4][3],aInfo[4][4]}

aColors := AClone(::Color)

FOR i := 1 TO nHeight/2
 aColors[1] += ::gradientStep
 aColors[2] += ::gradientStep
 aColors[3] += ::gradientStep
 GraSetColor(oPS, GraMakeRGBColor(aColors))
 GraBox(oPS, aStartPos, aEndPos, GRA_OUTLINE, 0, 0)
 aStartPos[2]++
 aEndPos[2]--
NEXT

RETURN self

ENDCLASS

The Garbage Collector

Xbase++ has a running thread that is used for memory cleanup. When a memory
variable no longer has any reference, it is "released" from memory. For example,

 Xbase++ Language Concepts for Newbies
Geek Gatherings Roger Donnay

LOCAL variables are released at the end of the function in which they are called,
unless they are "detached", then they are only released when the codeblock
referencing them is released. PRIVATE variables are released at the end of the
function in which they are called.

The garbage collector is responsible for de-allocating system memory whenever
variables are released. It is a good practice to use LOCAL and PRIVATE variables to
insure that memory is properly de-allocated. PUBLIC and STATIC variables are never
released, therefore it is not a good practice to store arrays or objects to PUBLIC and
STATIC variables. If a STATIC variable must be used to temporarily point to an array
or object, then the only way to release the memory used by the array or object is to set
the STATIC variable to NIL.

Conclusion

Getting started with Xbase++ is not a difficult process if you have any programming
experience at all, but it is especially easy if you have experience in the Xbase dialect
languages. You are about to enter a new era of powerful programming capability.
Congratulations!!

Thank you for your attendance at this session.

