PCREGREP(1)

NAME

PCREGREP(1)

pcregrep - a grep with Perl-compatible regular expressions.

SYNOPSIS

pcregrep [-Vcfhilnrsvx] pattern [file] ...

DESCRIPTION

pcregrep searches files for character patterns, in the same way as other grep commands do, but it uses
the PCRE regular expression library to support patterns that are compatible with the regular expres-
sions of Perl 5. See pcre(3) for a full description of syntax and semantics.

If no files are specified, pcregrep reads the standard input. By default, each line that matches the pat-
tern is copied to the standard output, and if there is more than one file, the file name is printed before
each line of output. However, there are options that can change how pcregrep behaves.

Lines are limited to BUFSIZ characters. BUFSIZ is defined in <stdio.h>. The newline character is
removed from the end of each line before it is matched against the pattern.

OPTIONS
-V

-C

Write the version number of the PCRE library being used to the standard error stream.

Do not print individual lines; instead just print a count of the number of lines that would
otherwise have been printed. If several files are given, a count is printed for each of them.

versity of Cambridge for use on Unix systems connected to

the Internet. It is freely available under the terms of

the GNU General Public Licence. In style it is similar to
Smail 3, but its facilities are more extensive, and in
particular it has some defences against mail bombs and
unsolicited junk mail, in the form of options for refusing
messages from particular hosts, networks, or senders.

Exim’s command line takes the standard Unix form of a

sequence of options, each starting with a hyphen charac-ffilename Read patterns from
the file, one per line, and match all patterns against each line. There is a maximum of 100
patterns. Trailing white space is removed, and blank lines are ignored. An empty file con-
tains no patterns and therefore matches nothing.

Suppress printing of filenames when searching multiple files.
Ignore upper/lower case distinctions during comparisons.

Instead of printing lines from the files, just print the names of the files containing lines that
would have been printed. Each file name is printed once, on a separate line.

Precede each line by its line number in the file.

If any file is a directory, recursively scan the files it contains. Without -r a directory is
scanned as a normal file.

Work silently, that is, display nothing except error messages. The exit status indicates
whether any matches were found.

Invert the sense of the match, so that lines which do not match the pattern are now the ones
that are found.

Force the pattern to be anchored (it must start matching at the beginning of the line) and in
addition, require it to match the entire line. This is equivalent to having ™ and $ characters
at the start and end of each alternative branch in the regular expression.

PCREGREP(1) PCREGREP(1)

SEE ALSO
pcre(3), Perl 5 documentation

DIAGNOSTICS
Exit status is 0 if any matches were found, 1 if no matches were found, and 2 for syntax errors or ina-

cessiblefi les (even if matches were found).

AUTHOR
Philip Hazel <phl0@cam.ac.uk>

Last updated: 15 August 2001
Copyright (c) 1997-2001 University of Cambridge.

PCRETEST(1) PCRETEST(1)

NAME
pcretest - a program for testing Perl-compatible regular expressions.

SYNOPSIS
pcretest [-d] [-i] [-m] [-0 osiz€] [-p] [-t] [source] [destination]

pcretest was written as a test program for the PCRE regular expression library itself, but it can also be
used for experimenting with regular expressions. This man page describes the features of the test pro-
gram; for details of the regular expressions themselves, see the pcre man page.

OPTIONS
-d Behave as if each regex had the /D modifi er (see below); the internal form is output after
compilation.
i Behave as if each regex had the /I modifi er; information about the compiled pattern is
given after compilation.
-m Output the size of each compiled pattern after it has been compiled. This is equivalent to

adding /M to each regular expression. For compatibility with earlier versions of pcretest, -s
isasynonym for -m.

-0 0size Set the number of elements in the output vector that is used when calling PCRE to be
osize. The default value is 45, which is enough for 14 capturing subexpressions. The vector
size can be changed for individual matching calls by including \O in the data line (see
below).

-p Behave as if each regex has /P modifi er; the POSIX wrapper APl is used to call PCRE.
None of the other options has any effect when -p is set.

-t Run each compile, study, and match 20000 times with a timer, and output resulting time
per compile or match (in milliseconds). Do not set -t with -m, because you will then get
the size output 20000 times and the timing will be distorted.

DESCRIPTION
If pcretest is given two fi lename arguments, it reads from the fi rst and writes to the second. If it is
given only one fi lename argument, it reads from that fi le and writes to stdout. Otherwise, it reads from
stdin and writes to stdout, and prompts for each line of input, using "re>" to prompt for regular expres-
sions, and "data>" to prompt for data lines.

The program handles any number of sets of input on a single input fi le. Each set starts with a regular
expression, and continues with any number of data lines to be matched against the pattern. An empty
line signals the end of the data lines, at which point a new regular expression is read. The regular
expressions are given enclosed in any non-alphameric delimiters other than backslash, for example

/(abc)x+yz/

White space before the initial delimiter isignored. A regular expression may be continued over several
input lines, in which case the newline characters are included within it. It is possible to include the
delimiter within the pattern by escaping it, for example

[abc\/def/
If you do so, the escape and the delimiter form part of the pattern, but since delimiters are always non-
alphameric, this does not affect its interpretation. If the terminating delimiter is immediately followed
by a backslash, for example,

fabch\

then a backslash is added to the end of the pattern. This is done to provide a way of testing the error
condition that arisesif a pattern fi nishes with a backslash, because

PCRETEST(1) PCRETEST(1)

fabcV

is interpreted as the first line of a pattern that starts with "abc/", causing pcretest to read the next line as
a continuation of the regular expression.

PATTERN MODIFIERS
The pattern may be followed by i, m, s, or x to set the PCRE_CASELESS, PCRE_MULTILINE,
PCRE_DOTALL, or PCRE_EXTENDED options, respectively. For example:

[/caseless/i

These modifier letters have the same effect as they do in Perl. There are others which set PCRE options
that do not correspond to anything in Perl: /A, /E, and /X set PCRE_ANCHORED, PCRE_DOL-
LAR_ENDONLY, and PCRE_EXTRA respectively.

Searching for all possible matches within each subject string can be requested by the /g or /G modifier.
After finding a match, PCRE is called again to search the remainder of the subject string. The differ-
ence between /g and /G is that the former uses the startoffset argument to pcre_exec() to start searching
at a new point within the entire string (which is in effect what Perl does), whereas the latter passes over
a shortened substring. This makes a difference to the matching process if the pattern begins with a
lookbehind assertion (including \b or \B).

If any call to pcre_exec() in a /g or /G sequence matches an empty string, the next call is done with the
PCRE_NOTEMPTY and PCRE_ANCHORED flags set in order to search for another, non-empty,
match at the same point. If this second match fails, the start offset is advanced by one, and the normal
match is retried. This imitates the way Perl handles such cases when using the /g modifier or the split()
function.

There are a number of other modifiers for controlling the way pcretest operates.
The /+ modifier requests that as well as outputting the substring that matched the entire pattern, pcretest
should in addition output the remainder of the subject string. This is useful for tests where the subject
contains multiple copies of the same substring.
The /L modifier must be followed directly by the name of a locale, for example,

[pattern/Lfr
For this reason, it must be the last modifier letter. The given locale is set, pcre_ maketables() is called
to build a set of character tables for the locale, and this is then passed to pcre_compile() when compil-
ing the regular expression. Without an /L modifier, NULL is passed as the tables pointer; that is, /L
applies only to the expression on which it appears.
The /I modifier requests that pcretest output information about the compiled expression (whether it is
anchored, has a fixed first character, and so on). It does this by calling pcre fullinfo() after compiling
an expression, and outputting the information it gets back. If the pattern is studied, the results of that

are also output.

The /D modifier is a PCRE debugging feature, which also assumes /I. It causes the internal form of
compiled regular expressions to be output after compilation.

The /S modifier causes pcre study() to be called after the expression has been compiled, and the
results used when the expression is matched.

The /M modifier causes the size of memory block used to hold the compiled pattern to be output.

The /P modifier causes pcretest to call PCRE via the POSIX wrapper API rather than its native API.

PCRETEST(1) PCRETEST(1)

When thisis done, all other modifi ers except /i, /m, and /+ are ignored. REG_ICASE is set if /i is pre-
sent, and REG_NEWLINE is set if /m is present. The wrapper functions force PCRE DOL-
LAR_ENDONLY always, and PCRE_DOTALL unlessREG_NEWLINE is set.

The /8 modifi er causes pcretest to call PCRE with the PCRE_UTF8 option set. This turns on the (cur-
rently incomplete) support for UTF-8 character handling in PCRE, provided that it was compiled with
this support enabled. This modifi er also causes any non-printing characters in output strings to be
printed using the \x{ hh...} notation if they are valid UTF-8 sequences.

DATA LINES
Before each data line is passed to pcre_exec(), leading and trailing whitespace is removed, and it is
then scanned for \ escapes. The following are recognized:

\a adarm (= BEL)

\b backspace

\e escape

\f formfeed

\n newline

\r carriage return
\t tab

\v vertical tab

\nnn octal character (up to 3 octal digits)

\xhh hexadecimal character (up to 2 hex digits)
\x{hh...} hexadecima UTF-8 character

\A pass the PCRE_ANCHORED option to pcre_exec()
\B pass the PCRE_NOTBOL option to pcre_exec()
\Cdd call pcre_copy_substring() for substring dd
after a successful match (any decimal number
less than 32)
\Gdd call pcre_get substring() for substring dd
after a successful match (any decimal number
less than 32)
\L call pcre_get substringlist() after a
successful match
\N pass the PCRE_NOTEMPTY option to pcre_exec()
\Odd set the size of the output vector passed to
pcre_exec() to dd (any number of decimal
digits)
\Z pass the PCRE_NOTEOL option to pcre_exec()

When \O is used, it may be higher or lower than the size set by the -O option (or defaulted to 45); \O
appliesonly to the call of pcre_exec() for the line in which it appears.

A backslash followed by anything else just escapes the anything else. If the very last character is a
backslash, it isignored. This gives a way of passing an empty line as data, since areal empty line ter-
minates the data input.

If /P was present on the regex, causing the POSIX wrapper API to be used, only 0 causing REG_NOT-
BOL and REG_NOTEOL to be passed to regexec() respectively.

The use of \x{hh...} to represent UTF-8 charactersis not dependent on the use of the /8 modifi er on the
pattern. It is recognized aways. There may be any number of hexadecimal digits inside the braces. The
result is from one to six bytes, encoded according to the UTF-8 rules.

PCRETEST(1) PCRETEST(1)

OUTPUT FROM PCRETEST
When a match succeeds, pcretest outputs the list of captured substrings that pcre_exec() returns, start-
ing with number 0 for the string that matched the whole pattern. Here is an example of an interactive
pcretest run.

$ pcretest
PCRE version 2.06 08-Jun-1999

re> ["abc(\d+)/
data> abc123

0: abc123
1:123
data> xyz
No match

If the strings contain any non-printing characters, they are output as \Ox escapes, or as \x{...} escapes if
the /8 modifier was present on the pattern. If the pattern has the /+ modifier, then the output for sub-
string 0 is followed by the the rest of the subject string, identified by "0+" like this:

re> /cat/+
data> cataract
0: cat

0+ aract

If the pattern has the /g or /G modifier, the results of successive matching attempts are output in
sequence, like this:

re> \Bi(\w\w)/g
data> Mississippi
0: iss
ss
:iss
ss
1ipp
- pp

roROR

"No match" is output only if the first match attempt fails.

If any of the sequences \C, \G, or \L are present in a data line that is successfully matched, the sub-
strings extracted by the convenience functions are output with C, G, or L after the string number
instead of a colon. This is in addition to the normal full list. The string length (that is, the return from
the extraction function) is given in parentheses after each string for \C and \G.

Note that while patterns can be continued over several lines (a plain ">" prompt is used for continua-
tions), data lines may not. However newlines can be included in data by means of the \n escape.

AUTHOR
Philip Hazel <phl0@cam.ac.uk>
University Computing Service,
New Museums Site,
Cambridge CB2 3QG, England.
Phone: +44 1223 334714

Last updated: 15 August 2001
Copyright (c) 1997-2001 University of Cambridge.

PCRE(3) PCRE(3)

NAME
pcre - Perl-compatible regular expressions.

SYNOPSIS
#include <pcre.h>

pcre*pcre_compile(const char *pattern, int options,
const char **errptr, int *erroffset,
const unsigned char *tableptr);

pcre extra*pcre_study(const pcre*code, int options,
const char **errptr);

int pcre_exec(const pcre *code, const pcre_extra*extra,
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize);

int pcre_copy_substring(const char *subject, int *ovector,
int stringcount, int stringnumber, char *buffer,
int buffersize);

int pcre_get_substring(const char *subject, int *ovector,
int stringcount, int stringnumber,
const char **stringptr);

int pcre_get_substring_list(const char *subject,
int *ovector, int stringcount, const char ***listptr);

void pcre_free substring(const char *stringptr);
void pcre_free substring_list(const char **stringptr);
const unsigned char *pcre_maketables(void);

int pcre_fullinfo(const pcre *code, const pcre_extra*extra,
int what, void *where);

int pcre_info(const pcre *code, int *optptr, int *firstcharptr);
char *pcre_version(void);

void *(*pcre_malloc)(size t);

void (*pcre_free)(void *);

DESCRIPTION
The PCRE library is a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5, with just a few differences (see below). The current implementa-
tion corresponds to Perl 5.005, with some additional features from later versions. This includes some
experimental, incomplete support for UTF-8 encoded strings. Details of exactly what is and what is not
supported are given below.

PCRE has its own native API, which is described in this document. There is also a set of wrapper func-
tions that correspond to the POSIX regular expression API. These are described in the pcreposix doc-
umentation.

The native API function prototypes are defi ned in the header fi le pcre.h, and on Unix systems the
library itself is called libpcre.a, so can be accessed by adding -Ipcre to the command for linking an
application which calls it. The header fi le defi nes the macros PCRE_MAJOR and PCRE_MINOR to
contain the major and minor release numbers for the library. Applications can use these to include sup-
port for different releases.

The functions pcre_compile(), pcre study(), and pcre_exec() are used for compiling and matching
regular expressions. A sample program that demonstrates the simplest way of using them is givenin the
fi le pcredemo.c. The last section of this man page describes how to run it.

PCRE(3) PCRE(3)

The functions pcre_copy_substring(), pcre _get_substring(), and pcre_get_substring_list() are con-
venience functions for extracting captured substrings from a matched subject string; pcre_free sub-
string() and pcre_free substring list() are also provided, to free the memory used for extracted
strings.

The function pcre_maketables() is used (optionally) to build a set of character tables in the current
locale for passing to pcre_compile().

The function pcre fullinfo() is used to fi nd out information about a compiled pattern; pcre_info() isan
obsolete version which returns only some of the available information, but is retained for backwards
compatibility. The function pcre version() returns a pointer to a string containing the version of
PCRE and its date of release.

The global variables pcre_malloc and pcre_freeinitialy contain the entry points of the standard mal-
loc() and free() functions respectively. PCRE calls the memory management functions via these vari-
ables, so a calling program can replace them if it wishes to intercept the calls. This should be done
before calling any PCRE functions.

MULTI-THREADING
The PCRE functions can be used in multi-threading applications, with the proviso that the memory
management functions pointed to by pcre_malloc and pcre free are shared by al threads.

The compiled form of aregular expression is not atered during matching, so the same compiled pattern
can safely be used by several threads at once.

COMPILING A PATTERN
The function pcre_compile() is called to compile a pattern into an internal form. The pattern isa C
string terminated by a binary zero, and is passed in the argument pattern. A pointer to a single block of
memory that is obtained via pcre_malloc is returned. This contains the compiled code and related data.
The pcre type is defi ned for the returned block; this is a typedef for a structure whose contents are not
externally defi ned. It is up to the caller to free the memory when it is no longer required.

Although the compiled code of a PCRE regex is relocatable, that is, it does not depend on memory
location, the complete pcre data block is not fully relocatable, because it contains a copy of the tableptr
argument, which is an address (see below).

The size of a compiled pattern is roughly proportional to the length of the pattern string, except that
each character class (other than those containing just a single character, negated or not) requires 33
bytes, and repeat quantifi ers with a minimum greater than one or a bounded maximum cause the rele-
vant portions of the compiled pattern to be replicated.

The options argument contains independent bits that affect the compilation. It should be zero if no
options are required. Some of the options, in particular, those that are compatible with Perl, can aso be
set and unset from within the pattern (see the detailed description of regular expressions below). For
these options, the contents of the options argument specifi es their initial settings at the start of compila-
tion and execution. The PCRE_ANCHORED option can be set at the time of matching as well as at
compile time.

If errptr is NULL, pcre_compile() returns NULL immediately. Otherwise, if compilation of a pattern
fals, pcre_compile() returns NULL, and sets the variable pointed to by errptr to point to atextual error
message. The offset from the start of the pattern to the character where the error was discovered is
placed in the variable pointed to by erroffset, which must not be NULL. If it is, an immediate error is
given.

If the fi nal argument, tableptr, is NULL, PCRE uses a default set of character tables which are built
when it is compiled, using the default C locale. Otherwise, tableptr must be the result of a call to

PCRE(3) PCRE(3)

pcre_maketables(). See the section on locale support below.
This code fragment shows a typical straightforward call to pcre_compile():

pcre *re;

const char *error;
int erroffset;

re = pcre_compile(

"A*Z", [* the pattern */

0, [* default options */

&error, [* for error message */
&erroffset, /* for error offset */

NULL); /* use default character tables */

The following option bits are defined in the header file:
PCRE_ANCHORED

If this bit is set, the pattern is forced to be "anchored", that is, it is constrained to match only at the start
of the string which is being searched (the "subject string"). This effect can also be achieved by appro-
priate constructs in the pattern itself, which is the only way to do it in Perl.

PCRE_CASELESS

If this bit is set, letters in the pattern match both upper and lower case letters. It is equivalent to Perl’s /i
option.

PCRE_DOLLAR_ENDONLY

If this bit is set, a dollar metacharacter in the pattern matches only at the end of the subject string. With-
out this option, a dollar also matches immediately before the final character if it is a newline (but not
before any other newlines). The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTI-
LINE is set. There is no equivalent to this option in Perl.

PCRE_DOTALL

If this bit is set, a dot metacharater in the pattern matches all characters, including newlines. Without it,
newlines are excluded. This option is equivalent to Perl’s /s option. A negative class such as ["a] always
matches a newline character, independent of the setting of this option.

PCRE_EXTENDED

If this bit is set, whitespace data characters in the pattern are totally ignored except when escaped or
inside a character class, and characters between an unescaped # outside a character class and the next
newline character, inclusive, are also ignored. This is equivalent to Perl’s /x option, and makes it possi-
ble to include comments inside complicated patterns. Note, however, that this applies only to data char-
acters. Whitespace characters may never appear within special character sequences in a pattern, for
example within the sequence (?(which introduces a conditional subpattern.

PCRE_EXTRA

This option was invented in order to turn on additional functionality of PCRE that is incompatible with
Perl, but it is currently of very little use. When set, any backslash in a pattern that is followed by a letter
that has no special meaning causes an error, thus reserving these combinations for future expansion. By
default, as in Perl, a backslash followed by a letter with no special meaning is treated as a literal. There
are at present no other features controlled by this option. It can also be set by a (?X) option setting
within a pattern.

PCRE_MULTILINE

PCRE(3)

PCRE(3)

By default, PCRE treats the subject string as consisting of a single "line" of characters (even if it actu-
ally contains several newlines). The "start of line" metacharacter (") matches only at the start of the
string, while the "end of line" metacharacter ($) matches only at the end of the string, or before a termi-
nating newline (unless PCRE_DOLLAR _ENDONLY isset). Thisisthe same as Perl.

When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs match immediately
following or immediately before any newline in the subject string, respectively, as well as at the very
start and end. Thisis equivalent to Perl’s/m option. If there are no "\n" charactersin a subject string, or
no occurrences of © or $in a pattern, setting PCRE_MULTILINE has no effect.

PCRE_UNGREEDY

This option inverts the "greediness" of the quantifi ers so that they are not greedy by default, but become
greedy if followed by "?". It is not compatible with Perl. It can also be set by a (?U) option setting
within the pattern.

PCRE_UTF8

This option causes PCRE to regard both the pattern and the subject as strings of UTF-8 characters
instead of just byte strings. However, it is available only if PCRE has been built to include UTF-8 sup-
port. If not, the use of this option provokes an error. Support for UTF-8 is new, experimental, and
incomplete. Details of exactly what it entails are given below.

STUDYING A PATTERN

When a pattern is going to be used several times, it is worth spending more time analyzing it in order to
speed up the time taken for matching. The function pcre_study() takes a pointer to a compiled pattern
as its fi rst argument, and returns a pointer to a pcre_extra block (another typedef for a structure with
hidden contents) containing additional information about the pattern; this can be passed to pcre_exec().
If no additional information isavailable, NULL isreturned.

The second argument contains option bits. At present, no options are defi ned for pcre_study(), and this
argument should always be zero.

The third argument for pcre_study() is a pointer to an error message. |f studying succeeds (even if no
datais returned), the variable it pointsto is set to NULL. Otherwise it points to a textual error message.

Thisisatypica cal to pcre_study():

pcre_extra*pe;
pe = pcre_study(
re, [* result of pcre_compile() */
(0} /* no options exist */
&error); /* set to NULL or pointsto a message */

At present, studying a pattern is useful only for non-anchored patterns that do not have a single fi xed
starting character. A bitmap of possible starting charactersis created.

LOCALE SUPPORT

10

PCRE handles caseless matching, and determines whether characters are letters, digits, or whatever, by
reference to a set of tables. The library contains a default set of tables which is created in the default C
locale when PCRE is compiled. This is used when the fi nal argument of pcre_compile() is NULL, and
is suffi cient for many applications.

An adternative set of tables can, however, be supplied. Such tables are built by caling the
pcre_maketables() function, which has no arguments, in the relevant locale. The result can then be
passed to pcre compile() as often as necessary. For example, to build and use tables that are

PCRE(3) PCRE(3)

appropriate for the French locale (where accented characters with codes greater than 128 are treated as
letters), the following code could be used:

setlocale(LC_CTYPE, "fr");
tables = pcre_maketables();
re = pcre_compile(..., tables);

The tables are built in memory that is obtained via pcre malloc. The pointer that is passed to
pcre_compile is saved with the compiled pattern, and the same tables are used via this pointer by
pcre study() and pcre exec(). Thus for any single pattern, compilation, studying and matching all
happen in the same locale, but different patterns can be compiled in different locales. It is the caller's
responsibility to ensure that the memory containing the tables remains available for as long as it is
needed.

INFORMATION ABOUT A PATTERN
The pcre_fullinfo() function returns information about a compiled pattern. It replaces the obsolete
pcre_info() function, which is nevertheless retained for backwards compability (and is documented
below).

The fi rst argument for pcre_fullinfo() is a pointer to the compiled pattern. The second argument is the
result of pcre study(), or NULL if the pattern was not studied. The third argument specifi es which
piece of information is required, while the fourth argument is a pointer to a variable to receive the data.
Theyield of the function is zero for success, or one of the following negative numbers:

PCRE_ERROR NULL theargument code was NULL

the argument where was NULL
PCRE_ERROR_BADMAGIC the "magic number" was not found
PCRE_ERROR_BADOPTION the value of what wasinvalid

Hereisatypical cal of pcre fullinfo(), to obtain the length of the compiled pattern:

intrc;

unsigned long int length;

rc = pere_fullinfo(
re, [* result of pcre_compile() */
pe, [* result of pcre_study(), or NULL */
PCRE_INFO_SIZE, /* what isrequired */
&length); [* where to put the data */

The possible values for the third argument are defi ned in pcre.h, and are as follows:
PCRE_INFO_OPTIONS

Return a copy of the options with which the pattern was compiled. The fourth argument should point to

an unsigned long int variable. These option bits are those specifi ed in the call to pcre_compile(), mod-

ifi ed by any top-level option settings within the pattern itself, and with the PCRE_ANCHORED bit

forcibly set if the form of the pattern impliesthat it can match only at the start of a subject string.
PCRE_INFO_SIZE

Return the size of the compiled pattern, that is, the value that was passed as the argument to pcre_mal-

loc() when PCRE was getting memory in which to place the compiled data. The fourth argument

should point to asize t variable.

PCRE_INFO_CAPTURECOUNT

Return the number of capturing subpatterns in the pattern. The fourth argument should point to an int

11

PCRE(3) PCRE(3)

variable.
PCRE_INFO BACKREFMAX

Return the number of the highest back reference in the pattern. The fourth argument should point to an
int variable. Zero isreturned if there are no back references.

PCRE_INFO_FIRSTCHAR

Return information about the fi rst character of any matched string, for a non-anchored pattern. If there
isafi xed fi rst character, e.g. from a pattern such as (cat|cow|coyote), it is returned in the integer pointed
to by where. Otherwise, if either

(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch startswith"” ", or

(b) every branch of the pattern starts with ".*" and PCRE_DOTALL isnot set (if it were set, the pattern
would be anchored),

-1 isreturned, indicating that the pattern matches only at the start of a subject string or after any "\n"
within the string. Otherwise -2 isreturned. For anchored patterns, -2 is returned.

PCRE_INFO_FIRSTTABLE

If the pattern was studied, and this resulted in the construction of a 256-bit table indicating a fi xed set
of characters for the fi rst character in any matching string, a pointer to the table is returned. Otherwise
NULL isreturned. The fourth argument should point to an unsigned char * variable.

PCRE_INFO_LASTLITERAL

For a non-anchored pattern, return the value of the rightmost literal character which must exist in any
matched string, other than at its start. The fourth argument should point to an int variable. If thereis no
such character, or if the pattern is anchored, -1 is returned. For example, for the pattern /a\d+z\d+/ the
returned valueis’z'.

The pcre_info() function is now obsolete because its interface is too restrictive to return all the avail-
able data about a compiled pattern. New programs should use pcre fullinfo() instead. The yield of
pcre_info() isthe number of capturing subpatterns, or one of the following negative numbers:

PCRE_ERROR NULL theargument code was NULL
PCRE_ERROR_BADMAGIC the "magic number" was not found

If the optptr argument is not NULL, a copy of the options with which the pattern was compiled is
placed in the integer it pointsto (see PCRE_INFO_OPTIONS above).

If the pattern is not anchored and the firstcharptr argument is not NULL, it is used to pass back infor-
mation about the fi rst character of any matched string (see PCRE_INFO_FIRSTCHAR above).

MATCHING A PATTERN

12

The function pcre_exec() is caled to match a subject string against a pre-compiled pattern, which is
passed in the code argument. If the pattern has been studied, the result of the study should be passed in
the extra argument. Otherwise this must be NULL.

Here isan example of asimple call to pcre_exec():
intrc;

int ovector[30];
rc = pcre_exec(

PCRE(3) PCRE(3)

re, /* result of pcre_compile() */

NULL, /* we didn’t study the pattern */
"some string", /* the subject string */

11, /* the length of the subject string */

0, [* start at offset 0 in the subject */

0, [* default options */

ovector, [* vector for substring information */
30); /* number of elements in the vector */

The PCRE_ANCHORED option can be passed in the options argument, whose unused bits must be
zero. However, if a pattern was compiled with PCRE_ANCHORED, or turned out to be anchored by
virtue of its contents, it cannot be made unachored at matching time.

There are also three further options that can be set only at matching time:
PCRE_NOTBOL

The first character of the string is not the beginning of a line, so the circumflex metacharacter should
not match before it. Setting this without PCRE_MULTILINE (at compile time) causes circumflex never
to match.

PCRE_NOTEOL

The end of the string is not the end of a line, so the dollar metacharacter should not match it nor (except
in multiline mode) a newline immediately before it. Setting this without PCRE_MULTILINE (at com-
pile time) causes dollar never to match.

PCRE_NOTEMPTY

An empty string is not considered to be a valid match if this option is set. If there are alternatives in the
pattern, they are tried. If all the alternatives match the empty string, the entire match fails. For example,
if the pattern

a?b?

is applied to a string not beginning with "a" or "b", it matches the empty string at the start of the sub-
ject. With PCRE_NOTEMPTY set, this match is not valid, so PCRE searches further into the string for
occurrences of "a" or "b".

Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a special case of a pattern match
of the empty string within its split() function, and when using the /g modifier. It is possible to emulate
Perl’s behaviour after matching a null string by first trying the match again at the same offset with
PCRE_NOTEMPTY set, and then if that fails by advancing the starting offset (see below) and trying an
ordinary match again.

The subject string is passed as a pointer in subject, a length in length, and a starting offset in startoffset.
Unlike the pattern string, the subject may contain binary zero characters. When the starting offset is
zero, the search for a match starts at the beginning of the subject, and this is by far the most common
case.

A non-zero starting offset is useful when searching for another match in the same subject by calling
pcre_exec() again after a previous success. Setting startoffset differs from just passing over a short-
ened string and setting PCRE_NOTBOL in the case of a pattern that begins with any kind of lookbe-
hind. For example, consider the pattern

\Biss\B

which finds occurrences of "iss" in the middle of words. (\B matches only if the current position in the
subject is not a word boundary.) When applied to the string "Mississipi" the first call to pcre_exec()

13

PCRE(3) PCRE(3)

14

fi nds the fi rst occurrence. If pcre_exec() is called again with just the remainder of the subject, namely
"issipi", it does not match, because \B is always false at the start of the subject, which is deemed to be a

word boundary. However, if pcre_exec() is passed the entire string again, but with startoffset set to 4, it

fi nds the second occurrence of "iss' because it is able to look behind the starting point to discover that
it is preceded by aletter.

If a non-zero starting offset is passed when the pattern is anchored, one attempt to match at the given
offset is tried. This can only succeed if the pattern does not require the match to be at the start of the
subject.

In general, a pattern matches a certain portion of the subject, and in addition, further substrings from
the subject may be picked out by parts of the pattern. Following the usage in Jeffrey Friedl’s book, this
is caled "capturing” in what follows, and the phrase "capturing subpattern” is used for a fragment of a
pattern that picks out a substring. PCRE supports several other kinds of parenthesized subpattern that
do not cause substrings to be captured.

Captured substrings are returned to the caller via a vector of integer offsets whose address is passed in

ovector. The number of elementsin the vector is passed in ovecsize. The fi rst two-thirds of the vector is
used to pass back captured substrings, each substring using a pair of integers. The remaining third of

the vector is used as workspace by pcre_exec() while matching capturing subpatterns, and is not avail-

able for passing back information. The length passed in ovecsize should always be a multiple of three.

If itisnot, it isrounded down.

When a match has been successful, information about captured substrings is returned in pairs of inte-
gers, starting at the beginning of ovector, and continuing up to two-thirds of its length at the most. The
fi rst element of apair is set to the offset of the fi rst character in a substring, and the second is set to the
offset of the fi rst character after the end of a substring. The fi rst pair, ovector[0] and ovector[1], iden-
tify the portion of the subject string matched by the entire pattern. The next pair is used for the fi rst
capturing subpattern, and so on. The value returned by pcre _exec() is the number of pairs that have
been set. If there are no capturing subpatterns, the return value from a successful match is 1, indicating
that just thefi rst pair of offsets has been set.

Some convenience functions are provided for extracting the captured substrings as separate strings.
These are described in the following section.

It is possible for an capturing subpattern number n+1 to match some part of the subject when subpat-
tern n has not been used at al. For example, if the string "abc" is matched against the pattern (al(z))(bc)
subpatterns 1 and 3 are matched, but 2 is not. When this happens, both offset values corresponding to
the unused subpattern are set to -1.

If a capturing subpattern is matched repeatedly, it is the last portion of the string that it matched that
gets returned.

If the vector is too small to hold all the captured substrings, it is used as far as possible (up to two-
thirds of its length), and the function returns a value of zero. In particular, if the substring offsets are
not of interest, pcre_exec() may be called with ovector passed as NULL and ovecsize as zero. How-
ever, if the pattern contains back references and the ovector isn't big enough to remember the related
substrings, PCRE has to get additional memory for use during matching. Thusit is usually advisable to
supply an ovector.

Note that pcre_info() can be used to fi nd out how many capturing subpatterns there are in a compiled
pattern. The smallest size for ovector that will allow for n captured substrings in addition to the offsets
of the substring matched by the whole pattern is (n+1)* 3.

If pcre_exec() fails, it returns a negative number. The following are defi ned in the header fi le:

PCRE_ERROR NOMATCH (-1

The subject string did not match the pattern.

PCRE(3) PCRE(3)

PCRE_ERROR_NULL (-2)

Either code or subject was passed as NULL, or ovector was NULL and ovecsize was not zero.
PCRE_ERROR_BADOPTION (-3)

An unrecognized bit was set in the options argument.
PCRE_ERROR_BADMAGIC (-4)

PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch the case when it is
passed ajunk pointer. Thisisthe error it gives when the magic number isn't present.

PCRE_ERROR_UNKNOWN_NODE (-5)

While running the pattern match, an unknown item was encountered in the compiled pattern. This error
could be caused by abug in PCRE or by overwriting of the compiled pattern.

PCRE_ERROR_NOMEMORY (-6)

If a pattern contains back references, but the ovector that is passed to pcre_exec() is not big enough to
remember the referenced substrings, PCRE gets a block of memory at the start of matching to use for
this purpose. If the call via pcre_malloc() fails, this error is given. The memory is freed at the end of
matching.

EXTRACTING CAPTURED SUBSTRINGS
Captured substrings can be accessed directly by using the offsets returned by pcre _exec() in ovector.
For convenience, the functions pcre copy_substring(), pcre get substring(), and pcre get sub-
string_list() are provided for extracting captured substrings as new, separate, zero-terminated strings. A
substring that contains a binary zero is correctly extracted and has a further zero added on the end, but
the result does not, of course, function asa C string.

Thefi rst three arguments are the same for al three functions: subject is the subject string which has just
been successfully matched, ovector is a pointer to the vector of integer offsets that was passed to
pcre_exec(), and stringcount is the number of substrings that were captured by the match, including the
substring that matched the entire regular expression. This is the value returned by pcre exec if it is
greater than zero. If pcre_exec() returned zero, indicating that it ran out of space in ovector, the value
passed as stringcount should be the size of the vector divided by three.

The functions pcre copy_substring() and pcre get _substring() extract a single substring, whose
number is given as stringnumber. A value of zero extracts the substring that matched the entire pattern,
while higher values extract the captured substrings. For pcre_copy_substring(), the string is placed in
buffer, whose length is given by buffersize, while for pcre _get_substring() a new block of memory is
obtained via pcre malloc, and its address is returned via stringptr. The yield of the function is the
length of the string, not including the terminating zero, or one of

PCRE_ERROR_NOMEMORY (-6)

The buffer was too small for pcre copy substring(), or the attempt to get memory failed for
pcre get_substring().

PCRE_ERROR_NOSUBSTRING (-7)
There is no substring whose number is stringnumber.

The pcre_get_substring_list() function extracts all available substrings and builds a list of pointers to
them. All thisis done in a single block of memory which is obtained via pcre_malloc. The address of

15

PCRE(3) PCRE(3)

the memory block is returned via listptr, which is aso the start of the list of string pointers. The end of
thelist ismarked by a NULL pointer. Theyield of the function is zero if all went well, or

PCRE_ERROR_NOMEMORY (-6)
if the attempt to get the memory block failed.

When any of these functions encounter a substring that is unset, which can happen when capturing sub-
pattern number n+1 matches some part of the subject, but subpattern n has not been used at al, they
return an empty string. This can be distinguished from a genuine zero-length substring by inspecting
the appropriate offset in ovector, which is negative for unset substrings.

The two convenience functions pcre free substring() and pcre free substring list() can be used to
free the memory returned by a previous call of pcre get substring() or pcre get_substring list(),
respectively. They do nothing more than call the function pointed to by pcre free, which of course
could be called directly from a C program. However, PCRE is used in some situations whereit is linked
via a specia interface to another programming language which cannot use pcre_free directly; it is for
these cases that the functions are provided.

LIMITATIONS

There are some size limitations in PCRE but it is hoped that they will never in practice be relevant. The
maximum length of a compiled pattern is 65539 (sic) bytes. All values in repeating quantifi ers must be
less than 65536. There maximum number of capturing subpatterns is 65535. There is no limit to the
number of non-capturing subpatterns, but the maximum depth of nesting of all kinds of parenthesized
subpattern, including capturing subpatterns, assertions, and other types of subpattern, is 200.

The maximum length of a subject string is the largest positive number that an integer variable can hold.
However, PCRE uses recursion to handle subpatterns and indefi nite repetition. This means that the
available stack space may limit the size of a subject string that can be processed by certain patterns.

DIFFERENCES FROM PERL

16

The differences described here are with respect to Perl 5.005.

1. By default, a whitespace character is any character that the C library function isspace() recognizes,
though it is possible to compile PCRE with alternative character type tables. Normally isspace()
matches space, formfeed, newline, carriage return, horizontal tab, and vertical tab. Perl 5 no longer
includes vertical tab in its set of whitespace characters. The \v escape that was in the Perl documenta-
tion for a long time was never in fact recognized. However, the character itself was treated as whites-
pace at least up to 5.002. In 5.004 and 5.005 it does not match \s.

2. PCRE does not allow repeat quantifi ers on lookahead assertions. Perl permits them, but they do not
mean what you might think. For example, (?1a){ 3} does not assert that the next three characters are not
"a'. It just asserts that the next character isnot "a" three times.

3. Capturing subpatterns that occur inside negative |ookahead assertions are counted, but their entriesin
the offsets vector are never set. Perl setsits numerical variables from any such patterns that are matched
before the assertion fails to match something (thereby succeeding), but only if the negative lookahead
assertion contains just one branch.

4. Though binary zero characters are supported in the subject string, they are not alowed in a pattern
string because it is passed as a normal C string, terminated by zero. The escape sequence "\0" can be
used in the pattern to represent a binary zero.

5. The following Perl escape sequences are not supported: \I, \u, \L, \U, \E, \Q. In fact these are imple-
mented by Perl’s general string-handling and are not part of its pattern matching engine.

PCRE(3) PCRE(3)

6. The Perl \G assertion is not supported as it is not relevant to single pattern matches.

7. Fairly obviously, PCRE does not support the (% code}) and (?p{code}) constructions. However,
there is some experimental support for recursive patterns using the non-Perl item (7R).

8. There are at the time of writing some oddities in Perl 5.005_02 concerned with the settings of cap-
tured strings when part of a pattern is repeated. For example, matching "aba' against the pattern
I" (ab)?)+$/ sets $2 to the value "b", but matching "aabbaa" against /”~ (aa(bb)?)+$/ leaves $2 unset.
However, if the pattern is changed to /~ (aa(b(b))?)+%$/ then $2 (and $3) are set.

In Perl 5.004 $2 is set in both cases, and that is aso true of PCRE. If in the future Perl changesto a
consistent state that is different, PCRE may change to follow.

9. Another as yet unresolved discrepancy is that in Perl 5.005_02 the pattern /~ (a)?2(?(1)alb)+$/ matches
the string "a", whereas in PCRE it does not. However, in both Perl and PCRE /~ (a)?a/ matched against
"a' leaves $1 unset.

10. PCRE provides some extensions to the Perl regular expression facilities:

(a) Although lookbehind assertions must match fi xed length strings, each alternative branch of a look-
behind assertion can match a different length of string. Perl 5.005 requires them al to have the same
length.

(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $ meta- character
matches only at the very end of the string.

(o) If PCRE_EXTRA is set, a backdash followed by aletter with no special meaning is faulted.

(d) If PCRE_UNGREEDY is set, the greediness of the repetition quantifi ers is inverted, that is, by
default they are not greedy, but if followed by a question mark they are.

(e) PCRE_ANCHORED can be used to force a pattern to be tried only at the start of the subject.

(f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY options for pcre_exec() have no
Perl equivalents.

(9) The (?R) construct allows for recursive pattern matching (Perl 5.6 can do this using the (?p{ code})
construct, which PCRE cannot of course support.)

REGULAR EXPRESSION DETAILS
The syntax and semantics of the regular expressions supported by PCRE are described below. Regular
expressions are also described in the Perl documentation and in a number of other books, some of
which have copious examples. Jeffrey Friedl’s "Mastering Regular Expressions’, published by O’ Reilly
(ISBN 1-56592-257), covers them in great detail.

The description here is intended as reference documentation. The basic operation of PCRE is on strings
of bytes. However, there is the beginnings of some support for UTF-8 character strings. To use this sup-
port you must confi gure PCRE to include it, and then call pcre compile() with the PCRE_UTF8
option. How this affects the pattern matching is described in the fi nal section of this document.

A regular expression is a pattern that is matched against a subject string from left to right. Most charac-
ters stand for themselves in a pattern, and match the corresponding characters in the subject. As a triv-
ia example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expressions comes

17

PCRE(3) PCRE(3)

from the ability to include alternatives and repetitions in the pattern. These are encoded in the pattern
by the use of meta-characters, which do not stand for themselves but instead are interpreted in some
specia way.

There are two different sets of meta-characters. those that are recognized anywhere in the pattern
except within square brackets, and those that are recognized in square brackets. Outside square brack-
ets, the meta-characters are as follows:

\ general escape character with several uses

- assert start of subject (or line, in multiline mode)
$ assert end of subject (or line, in multiline mode)
match any character except newline (by default)

[start character class defi nition
| start of alternative branch

(start subpattern

) end subpattern

?

extends the meaning of (
also 0 or 1 quantifi er
aso quantifi er minimizer
* 0 or more quantifi er
1 or more quantifi er
start min/max quantifi er

+

)

Part of a pattern that is in square brackets is called a "character class'. In a character class the only
meta-characters are;

\ general escape character

negate the class, but only if thefi rst character
- indicates character range
] terminatesthe character class

The following sections describe the use of each of the meta-characters.

BACKSLASH

18

The backslash character has several uses. Firstly, if it is followed by a non-alphameric character, it
takes away any special meaning that character may have. This use of backslash as an escape character
applies both inside and outside character classes.

For example, if you want to match a"*" character, you write "*" in the pattern. This applies whether or
not the following character would otherwise be interpreted as a meta-character, so it is always safe to
precede a non-alphameric with "\" to specify that it stands for itself. In particular, if you want to match
abackslash, you write "\\".

If apattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (other than in a
character class) and characters between a "#"' outside a character class and the next newline character
are ignored. An escaping backslash can be used to include a whitespace or "#" character as part of the
pattern.

A second use of backslash provides a way of encoding non-printing characters in patternsin a visible
manner. There is no restriction on the appearance of non-printing characters, apart from the binary zero
that terminates a pattern, but when a pattern is being prepared by text editing, it is usually easier to use
one of the following escape sequences than the binary character it represents:

\a aarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any character

\e escape (hex 1B)

\f formfeed (hex OC)

PCRE(3) PCRE(3)

\n newline (hex 0A)

\r carriage return (hex OD)

\t tab (hex 09)

\xhh character with hex code hh

\ddd character with octal code ddd, or backreference

The precise effect of "\cx" isas follows: if "x" isalower case |etter, it is converted to upper case. Then
bit 6 of the character (hex 40) is inverted. Thus "\cz" becomes hex 1A, but "\c{" becomes hex 3B,
while "\c;" becomes hex 7B.

After "\x", up to two hexadecimal digits are read (letters can be in upper or lower case).

After "\0" up to two further octal digits are read. In both cases, if there are fewer than two digits, just
those that are present are used. Thus the sequence "\O\x\07" specifi es two binary zeros followed by a
BEL character. Make sure you supply two digits after the initial zero if the character that follows is
itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class,
PCRE reads it and any following digits as a decimal number. If the number is less than 10, or if there
have been at least that many previous capturing left parentheses in the expression, the entire sequence
is taken as a back reference. A description of how this works is given later, following the discussion of
parenthesized subpatterns.

Inside a character class, or if the decima number is greater than 9 and there have not been that many
capturing subpatterns, PCRE re-reads up to three octal digits following the backslash, and generates a
single byte from the least signifi cant 8 bits of the value. Any subsequent digits stand for themselves.
For example:

\040 isanother way of writing a space

\40 isthe same, provided there are fewer than 40
previous capturing subpatterns

\7 isawaysaback reference

\11 might be aback reference, or another way of
writing atab

\011 isalwaysatab

\0113 isatab followed by the character "3"

\113 isthe character with octal code 113 (since there
can be no more than 99 back references)

\377 isabyte consisting entirely of 1 hits

\81 iseither aback reference, or abinary zero
followed by the two characters"8" and " 1"

Note that octal values of 100 or greater must not be introduced by aleading zero, because no more than
three octal digits are ever read.

All the sequences that defi ne a single byte value can be used both inside and outside character classes.
In addition, inside a character class, the sequence "\b" is interpreted as the backspace character (hex
08). Outside a character classit has a different meaning (see below).

The third use of backdash isfor specifying generic character types:

\d any decimal digit

\D any character that is not adecimal digit

\s any whitespace character

\S any character that is not a whitespace character
\w any "word" character

\W any "non-word" character

Each pair of escape sequences partitions the complete set of characters into two digjoint sets. Any given

19

PCRE(3) PCRE(3)

character matches one, and only one, of each pair.

A "word" character is any letter or digit or the underscore character, that is, any character which can be
part of a Perl "word". The defi nition of letters and digits is controlled by PCRE's character tables, and
may vary if locale- specifi ¢ matching is taking place (see "Locale support” above). For example, in the
"fr" (French) locale, some character codes greater than 128 are used for accented letters, and these are
matched by \w.

These character type sequences can appear both inside and outside character classes. They each match
one character of the appropriate type. If the current matching point is at the end of the subject string, all
of them fail, since there is no character to match.

The fourth use of backdlash is for certain simple assertions. An assertion specifi es a condition that has
to be met at a particular point in a match, without consuming any characters from the subject string.

The use of subpatterns for more complicated assertions is described below. The backslashed assertions
are

\b word boundary

\B not aword boundary

\A start of subject (independent of multiline mode)

\Z end of subject or newline at end (independent of multiline mode)
\z end of subject (independent of multiline mode)

These assertions may not appear in character classes (but note that "\b" has a different meaning, namely
the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the previous charac-
ter do not both match \w or \W (i.e. one matches \w and the other matches \W), or the start or end of
the string if the fi rst or last character matches \w, respectively.

The\A, \Z, and \z assertions differ from the traditional circumflex and dollar (described below) in that
they only ever match at the very start and end of the subject string, whatever options are set. They are
not affected by the PCRE_NOTBOL or PCRE NOTEOL options. If the startoffset argument of
pcre_exec() is non-zero, \A can never match. The difference between \Z and \z is that \Z matches
before a newline that is the last character of the string as well as at the end of the string, whereas \z
matches only at the end.

CIRCUMFLEX AND DOLLAR

20

Outside a character class, in the default matching mode, the circumflex character is an assertion which
is true only if the current matching point is at the start of the subject string. If the startoffset argument
of pcre_exec() is non-zero, circumflex can never match. Inside a character class, circumfiex has an
entirely different meaning (see below).

Circumfiex need not be the fi rst character of the pattern if a number of aternatives are involved, but it
should be the first thing in each alternative in which it appears if the pattern is ever to match that
branch. If al possible aternatives start with a circumflex, that is, if the pattern is constrained to match

only at the start of the subject, it is said to be an "anchored" pattern. (There are also other constructs
that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current matching point is at the end of the
subject string, or immediately before a newline character that is the last character in the string (by
default). Dollar need not be the last character of the pattern if a number of alternatives are involved, but
it should be the last item in any branch in which it appears. Dollar has no special meaning in a charac-
ter class.

The meaning of dollar can be changed so that it matches only at the very end of the string, by setting
the PCRE_DOLLAR _ENDONLY option at compile or matching time. This does not affect the \Z

PCRE(3) PCRE(3)

assertion.

The meanings of the circumflex and dollar characters are changed if the PCRE_MULTILINE option is
set. When this is the case, they match immediately after and immediately before an internal "\n" char-
acter, respectively, in addition to matching at the start and end of the subject string. For example, the
pattern /~ abcy/ matches the subject string "def\nabc” in multiline mode, but not otherwise. Conse-
quently, patterns that are anchored in single line mode because all branches start with "~ " are not
anchored in multiline mode, and a match for circumflex is possible when the startoffset argument of
pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option isignored if PCRE_MULTILINE
is set.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both
modes, and if all branches of a pattern start with \A it is always anchored, whether PCRE_MULTILINE
is set or not.

FULL STOP (PERIOD, DOT)
Outside a character class, a dot in the pattern matches any one character in the subject, including a non-
printing character, but not (by default) newline. If the PCRE_DOTALL option is set, dots match new-
lines as well. The handling of dot is entirely independent of the handling of circumflex and dollar, the
only relationship being that they both involve newline characters. Dot has no special meaning in a char-
acter class.

SQUARE BRACKETS
An opening square bracket introduces a character class, terminated by a closing square bracket. A clos-
ing square bracket on its own is not special. If a closing square bracket is required as a member of the
class, it should be the fi rst data character in the class (after an initial circumfiex, if present) or escaped
with a backdlash.

A character class matches a single character in the subject; the character must be in the set of characters
defi ned by the class, unless the fi rst character in the class is a circumflx, in which case the subject
character must not be in the set defi ned by the class. If a circumfiex is actually required as a member of
the class, ensure it is not the fi rst character, or escape it with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [~ agiou] matches any
character that is not alower case vowel. Note that a circumfiex is just a convenient notation for specify-
ing the characters which are in the class by enumerating those that are not. It is not an assertion: it still
consumes a character from the subject string, and fails if the current pointer is at the end of the string.

When caseless matching is set, any lettersin a class represent both their upper case and lower case ver-
sions, so for example, a caseless [agiou] matches "A" as well as "a', and a caseless [~ aeiou] does not
match "A", whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever the setting of
the PCRE_DOTALL or PCRE_MULTILINE optionsis. A class such as [~ & will aways match a new-
line.

The minus (hyphen) character can be used to specify a range of characters in a character class. For
example, [d-m] matches any letter between d and m, inclusive. If a minus character is required in a
class, it must be escaped with a backslash or appear in a position where it cannot be interpreted as indi-
cating arange, typically asthefi rst or last character in the class.

It is not possible to have the literal character "]" as the end character of a range. A pattern such as
[W-]46] isinterpreted as a class of two characters ("W" and "-") followed by aliteral string "46]", so it
would match "W46]" or "-46]". However, if the "]" is escaped with a backdlash it is interpreted as the
end of range, so [W-\]46] is interpreted as a single class containing a range followed by two separate
characters. The octal or hexadecimal representation of "]" can also be used to end arange.

21

PCRE(3)

PCRE(3)

Ranges operate in ASCII collating sequence. They can aso be used for characters specifi ed numeri-
caly, for example [\000-\037]. If arange that includes letters is used when caseless matching is set, it
matches the letters in either case. For example, [W-c] is equivalent to [][\" _‘wxyzabc], matched case-
lesdly, and if character tables for the "fr" locale are in use, [\xc8-\xcb] matches accented E charactersin
both cases.

The character types\d, \D, \s, \S, \w, and \W may also appear in a character class, and add the charac-
ters that they match to the class. For example, [\dAABCDEF] matches any hexadecimal digit. A circum-
flex can conveniently be used with the upper case character types to specify a more restricted set of
characters than the matching lower case type. For example, the class[~ \W_] matches any letter or digit,
but not underscore.

All non-alphameric characters other than \, -, © (at the start) and the terminating] are non-special in
character classes, but it does no harm if they are escaped.

POSIX CHARACTER CLASSES

Perl 5.6 (not yet released at the time of writing) is going to support the POSIX notation for character
classes, which uses names enclosed by [: and :] within the enclosing square brackets. PCRE supports
this notation. For example,

[01]:alpha:]%]
matches "0", "1", any alphabetic character, or "%". The supported class names are

anum lettersand digits

alpha letters

ascii character codesO - 127

cntrl control characters

digit decimal digits (same as\d)

graph printing characters, excluding space
lower lower case letters

print printing characters, including space
punct printing characters, excluding letters and digits
space white space (same as\s)

upper upper case letters

word "word" characters (same as \w)
xdigit hexadecimal digits

The names "ascii" and "word" are Perl extensions. Another Perl extension is negation, which is indi-
cated by a” character after the colon. For example,

[12[:" digit:]]
matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX syntax [.ch.] and [=ch=]

where "ch" is a "collating element”, but these are not supported, and an error is given if they are
encountered.

VERTICAL BAR

22

Vertical bar characters are used to separate alternative patterns. For example, the pattern
gilbert|sullivan

matches either "gilbert" or "sullivan". Any number of aternatives may appear, and an empty alternative
is permitted (matching the empty string). The matching process tries each aternative in turn, from left
to right, and the fi rst one that succeeds is used. If the alternatives are within a subpattern (defi ned
below), "succeeds' means matching the rest of the main pattern as well as the aternative in the

PCRE(3) PCRE(3)

subpattern.

INTERNAL OPTION SETTING
The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and PCRE_EXTENDED
can be changed from within the pattern by a sequence of Perl option letters enclosed between "(?' and
")". The option letters are

i for PCRE_CASELESS
m for PCRE_MULTILINE
s for PCRE_DOTALL

x for PCRE_EXTENDED

For example, (7im) sets caseless, multiline matching. It is also possible to unset these options by pre-
ceding the letter with a hyphen, and a combined setting and unsetting such as (?im-sx), which sets
PCRE_CASELESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and
PCRE_EXTENDED, is aso permitted. If a letter appears both before and after the hyphen, the option
IS unset.

The scope of these option changes depends on where in the pattern the setting occurs. For settings that
are outside any subpattern (defi ned below), the effect is the same as if the options were set or unset at
the start of matching. The following patterns al behave in exactly the same way:

(7)abe
a(?)bc
ab(?)c
abc(7)

which in turn is the same as compiling the pattern abc with PCRE_CASELESS set. In other words,
such "top level" settings apply to the whole pattern (unless there are other changes inside subpatterns).
If there is more than one setting of the same option at top level, the rightmost setting is used.

If an option change occurs inside a subpattern, the effect is different. Thisis a change of behaviour in
Perl 5.005. An option change inside a subpattern affects only that part of the subpattern that followsit,
so

(a(A)b)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used). By this means,
options can be made to have different settings in different parts of the pattern. Any changes made in
one alternative do carry on into subsequent branches within the same subpattern. For example,

(a(?)blc)

matches "ab", "aB", "c", and "C", even though when matching "C" the fi rst branch is abandoned before
the option setting. Thisis because the effects of option settings happen at compile time. There would be
some very weird behaviour otherwise.

The PCRE-specifi ¢ options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the same way
as the Perl-compatible options by using the characters U and X respectively. The (?X) flg setting is
specid in that it must always occur earlier in the pattern than any of the additional features it turns on,
even when itisat top level. It isbest put at the start.

SUBPATTERNS
Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking part of a pat-
tern as a subpattern does two things:

23

PCRE(3) PCRE(3)

1. It localizes a set of alternatives. For example, the pattern
cat(aractlerpillar|)

matches one of the words "cat", "cataract", or "caterpillar”. Without the parentheses, it would match
"cataract”, "erpillar" or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defi ned above). When the whole pattern
matches, that portion of the subject string that matched the subpattern is passed back to the caller via
the ovector argument of pcre_exec(). Opening parentheses are counted from left to right (starting from
1) to obtain the numbers of the capturing subpatterns.

For example, if the string "the red king" is matched against the pattern
the ((redjwhite) (king|queen))
the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3, respectively.

The fact that plain parentheses fulfi | two functions is not always helpful. There are often times when a
grouping subpattern is required without a capturing requirement. If an opening parenthesis is followed

by "?:", the subpattern does not do any capturing, and is not counted when computing the number of

any subsequent capturing subpatterns. For example, if the string "the white queen” is matched against

the pattern

the ((?:red|white) (king|gueen))

the captured substrings are "white queen” and "queen”, and are numbered 1 and 2. The maximum num-
ber of captured substrings is 99, and the maximum number of all subpatterns, both capturing and non-
capturing, is 200.

As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern,
the option letters may appear between the "?' and the ":". Thus the two patterns

(?:saturday|sunday)
(?:(?A)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to right, and
options are not reset until the end of the subpattern is reached, an option setting in one branch does
affect subsequent branches, so the above patterns match "SUNDAY" as well as " Saturday".

REPETITION

24

Repetition is specifi ed by quantifi ers, which can follow any of the following items:

asingle character, possibly escaped

the . metacharacter

a character class

aback reference (see next section)

a parenthesized subpattern (unless it is an assertion - see below)

The general repetition quantifi er specifi es a minimum and maximum number of permitted matches, by
giving the two numbers in curly brackets (braces), separated by a comma. The numbers must be less
than 65536, and the fi rst must be less than or equal to the second. For example:

z{ 2,4}

matches "zz", "zzz", or "zzzz". A closing brace on its own is not a specia character. If the second num-
ber is omitted, but the comma is present, there is no upper limit; if the second number and the comma

PCRE(3)

PCRE(3)

are both omitted, the quantifi er specifi es an exact number of required matches. Thus
[aeiou]{3;}

matches at least 3 successive vowels, but may match many more, while
\d{ 8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a quantifi er is not
allowed, or one that does not match the syntax of a quantifi er, is taken as a literal character. For exam-
ple, {,6} isnot aquantifi er, but aliteral string of four characters.

The quantifi er {0} is permitted, causing the expression to behave as if the previous item and the quanti-
fi er were not present.

For convenience (and historical compatibility) the three most common quantifi ers have single-character
abbreviations:

* isequivalentto{0,}
+ isequivaentto{1,}
? lisequivaentto{0,1}

It is possible to construct infi nite loops by following a subpattern that can match no characters with a
quantifi er that has no upper limit, for example:

()
Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However,
because there are cases where this can be useful, such patterns are now accepted, but if any repetition
of the subpattern does in fact match no characters, the loop isforcibly broken.
By default, the quantifi ers are "greedy", that is, they match as much as possible (up to the maximum
number of permitted times), without causing the rest of the pattern to fail. The classic example of
where this gives problems is in trying to match comments in C programs. These appear between the
sequences /* and */ and within the sequence, individual * and / characters may appear. An attempt to
match C comments by applying the pattern

N* x\x]
to the string

/* fi rst command */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item.

However, if a quantifi er is followed by a question mark, it ceases to be greedy, and instead matches the
minimum number of times possible, so the pattern

N* * A/
does the right thing with the C comments. The meaning of the various quantifi ers is not otherwise
changed, just the preferred number of matches. Do not confuse this use of question mark with its use
as aquantifi er inits own right. Because it has two uses, it can sometimes appear doubled, asin

\d?Ad

which matches one digit by preference, but can match two if that is the only way the rest of the pattern
matches.

25

PCRE(3)

PCRE(3)

If the PCRE_UNGREEDY option is set (an option which is not available in Perl), the quantifi ers are
not greedy by default, but individual ones can be made greedy by following them with a question mark.
In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantifi ed with a minimum repeat count that is greater than 1 or
with a limited maximum, more store is required for the compiled pattern, in proportion to the size of
the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl’s /s) is set, thus
allowing the . to match newlines, the pattern is implicitly anchored, because whatever follows will be
tried against every character position in the subject string, so there is no point in retrying the overall
match at any position after the fi rst. PCRE treats such a pattern as though it were preceded by \A. In
cases where it is known that the subject string contains no newlines, it is worth setting PCRE_DOTALL
when the pattern begins with .* in order to obtain this optimization, or alternatively using ~ to indicate
anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the substring that matched the fi nal itera-
tion. For example, after

(tweedle[dume]{ 3}\s*)+
has matched "tweedledum tweedledee" the value of the captured substring is "tweedledee". However, if

there are nested capturing subpatterns, the corresponding captured values may have been set in previ-
ousiterations. For example, after

/(&|(b))+/

matches "aba" the value of the second captured substring is"b".

BACK REFERENCES

26

Outside a character class, a backslash followed by a digit greater than O (and possibly further digits) is
aback reference to a capturing subpattern earlier (i.e. to itsleft) in the pattern, provided there have been
that many previous capturing left parentheses.

However, if the decimal number following the backslash islessthan 10, it is aways taken as a back ref-
erence, and causes an error only if there are not that many capturing left parentheses in the entire pat-
tern. In other words, the parentheses that are referenced need not be to the left of the reference for num-
bers less than 10. See the section entitled "Backslash" above for further details of the handling of digits
following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current subject
string, rather than anything matching the subpattern itself. So the pattern

(sengrespons)e and \libility

matches "sense and sensibility" and "response and responsibility", but not "sense and responsibility”. If
caseful matching isin force at the time of the back reference, the case of |ettersis relevant. For exam-

ple,
((F)rah)\s+\1

matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capturing subpattern
is matched caselesdly.

There may be more than one back reference to the same subpattern. If a subpattern has not actually
been used in a particular match, any back referencesto it awaysfail. For example, the pattern

PCRE(3) PCRE(3)

(@(bc)\2

alwaysfailsif it startsto match "a' rather than "bc". Because there may be up to 99 back references, al
digits following the backslash are taken as part of a potential back reference number. If the pattern con-
tinues with a digit character, some delimiter must be used to terminate the back reference. If the
PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty comment can be used.

A back reference that occurs inside the parentheses to which it refers fails when the subpattern is fi rst
used, so, for example, (a\1) never matches. However, such references can be useful inside repeated
subpatterns. For example, the pattern

(alb\1)+

matches any number of "a's and also "aba, "ababbaa’ etc. At each iteration of the subpattern, the back

reference matches the character string corresponding to the previous iteration. In order for this to work,

the pattern must be such that the fi rst iteration does not need to match the back reference. This can be
done using alternation, asin the example above, or by a quantifi er with aminimum of zero.

ASSERTIONS
An assertion is atest on the characters following or preceding the current matching point that does not
actually consume any characters. The simple assertions coded as\b, \B, \A, \Z, \z, ” and $ are described
above. More complicated assertions are coded as subpatterns. There are two kinds: those that ook
ahead of the current position in the subject string, and those that look behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the current match-
ing position to be changed. L ookahead assertions start with (?= for positive assertions and (?! for neg-
ative assertions. For example,
\w+(?2=;)
matches aword followed by a semicolon, but does not include the semicolon in the match, and
foo(?'bar)
matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar pattern
(?foo)bar
does not fi nd an occurrence of "bar" that is preceded by something other than "foo"; it fi nds any occur-
rence of "bar" whatsoever, because the assertion (?foo) is always true when the next three characters

are "bar". A lookbehind assertion is needed to achieve this effect.

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative assertions. For
example,

(?<!foo)bar
does fi nd an occurrence of "bar" that is not preceded by "foo". The contents of a lookbehind assertion
are restricted such that al the strings it matches must have a fi xed length. However, if there are several
alternatives, they do not all have to have the same fi xed length. Thus

(?<=bullock|donkey)
is permitted, but

(?<!dogs?|cats?)

27

PCRE(3) PCRE(3)

causes an error at compile time. Branches that match different length strings are permitted only at the
top level of alookbehind assertion. This is an extension compared with Perl 5.005, which requires all
branches to match the same length of string. An assertion such as

(P<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is acceptable
if rewritten to use two top-level branches:

(?2<=abclabde)

The implementation of lookbehind assertions is, for each aternative, to temporarily move the current
position back by the fi xed width and then try to match. If there are insuffi cient characters before the
current position, the match is deemed to fail. Lookbehinds in conjunction with once-only subpatterns
can be particularly useful for matching at the ends of strings; an example is given at the end of the sec-
tion on once-only subpatterns.

Several assertions (of any sort) may occur in succession. For example,

(?7<=\d{ 3})(?<!999)foo
matches "foo" preceded by three digits that are not "999". Notice that each of the assertions is applied
independently at the same point in the subject string. First there is a check that the previous three char-
acters are al digits, and then there is a check that the same three characters are not "999". This pattern
does not match "foo" preceded by six characters, the fi rst of which are digits and the last three of which
arenot "999". For example, it doesn’'t match "123abcfoo". A pattern to do that is

(?7<=\d{ 3} ...)(?<!999)fo0

This time the fi rst assertion looks at the preceding six characters, checking that the fi rst three are digits,
and then the second assertion checks that the preceding three characters are not "999".

Assertions can be nested in any combination. For example,
(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is preceded by "bar" which in turn is not preceded by "foo", while
(7<=\d{ 3} (?21999)...)foo

is another pattern which matches "foo" preceded by three digits and any three characters that are not
"999".

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it makes no
sense to assert the same thing several times. If any kind of assertion contains capturing subpatterns
within it, these are counted for the purposes of numbering the capturing subpatterns in the whole pat-
tern. However, substring capturing is carried out only for positive assertions, because it does not make
sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

ONCE-ONLY SUBPATTERNS

28

With both maximizing and minimizing repetition, failure of what follows normally causes the repeated
item to be re-evaluated to see if a different number of repeats allows the rest of the pattern to match.
Sometimes it is useful to prevent this, either to change the nature of the match, or to cause it fail earlier
than it otherwise might, when the author of the pattern knows there is no point in carrying on.

PCRE(3) PCRE(3)

Consider, for example, the pattern \d+foo when applied to the subject line
123456bar

After matching al 6 digits and then failing to match "foo", the normal action of the matcher is to try
again with only 5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing.
Once-only subpatterns provide the means for specifying that once a portion of the pattern has matched,
it is not to be re-evaluated in this way, so the matcher would give up immediately on failing to match
"foo" the first time. The notation is another kind of specia parenthesis, starting with (?> as in this
example:

(2>\d+)bar

This kind of parenthesis "locks up" the part of the pattern it contains once it has matched, and a failure
further into the pattern is prevented from backtracking into it. Backtracking past it to previous items,
however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that an iden-
tical standalone pattern would match, if anchored at the current point in the subject string.

Once-only subpatterns are not capturing subpatterns. Simple cases such as the above example can be
thought of as a maximizing repeat that must swallow everything it can. So, while both \d+ and \d+? are
prepared to adjust the number of digits they match in order to make the rest of the pattern match,
(?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be nested.

Once-only subpatterns can be used in conjunction with lookbehind assertions to specify effi cient
matching at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to a long string which does not match. Because matching proceeds from left to right,
PCRE will look for each "a" in the subject and then see if what follows matches the rest of the pattern.
If the pattern is specifi ed as

"~ *abcd$

theinitial .* matches the entire string at fi rst, but when this fails (because there is no following "a"), it
backtracks to match all but the last character, then al but the last two characters, and so on. Once again
the search for "a' covers the entire string, from right to |eft, so we are no better off. However, if the pat-
tern iswritten as

* (2>*)(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire string. The subsequent |ookbe-
hind assertion does a single test on the last four characters. If it fails, the match fails immediately. For
long strings, this approach makes a signifi cant difference to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated an unlimited
number of times, the use of a once-only subpattern is the only way to avoid some failing matches tak-
ing avery long timeindeed. The pattern

(\D+[<\d+>)*[17]

matches an unlimited number of substrings that either consist of non-digits, or digits enclosed in <>,
followed by either ! or 2. When it matches, it runs quickly. However, if it is applied to

29

PCRE(3) PCRE(3)

it takes a long time before reporting failure. This is because the string can be divided between the two
repeats in alarge number of ways, and all have to be tried. (The example used [!7] rather than a single
character at the end, because both PCRE and Perl have an optimization that allows for fast failure when
asingle character is used. They remember the last single character that is required for a match, and fail
early if it isnot present in the string.) If the pattern is changed to

((P\DH)[<\d+>)*[!7]

seguences of non-digits cannot be broken, and failure happens quickly.

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern conditionally or to choose between
two alternative subpatterns, depending on the result of an assertion, or whether a previous capturing
subpattern matched or not. The two possible forms of conditional subpattern are

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfi ed, the yes-pattern is used; otherwise the no-pattern (if present) is used. If there
are more than two alternatives in the subpattern, a compile-time error occurs.

There are two kinds of condition. If the text between the parentheses consists of a sequence of digits,
the condition is satisfi ed if the capturing subpattern of that number has previously matched. The num-
ber must be greater than zero. Consider the following pattern, which contains non-signifi cant white
space to make it more readable (assume the PCRE_EXTENDED option) and to divide it into three
parts for ease of discussion:

(\O? [0+ (ADY)

Thefi rst part matches an optional opening parenthesis, and if that character is present, setsit asthefi rst
captured substring. The second part matches one or more characters that are not parentheses. The third

part is a conditional subpattern that tests whether the fi rst set of parentheses matched or not. If they did,
that is, if subject started with an opening parenthesis, the condition is true, and so the yes-pattern is

executed and a closing parenthesis is required. Otherwise, since no-pattern is not present, the subpat-

tern matches nothing. In other words, this pattern matches a sequence of non-parentheses, optionally

enclosed in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a positive or negative
lookahead or lookbehind assertion. Consider this pattern, again containing non-signifi cant white space,
and with the two aternatives on the second line;

(A?=[" az]*[a2])
\d{2}-[aZ]{3}\d{2} | \d{2}\d{2}\d[2})

The condition is a positive lookahead assertion that matches an optional sequence of non-letters fol-
lowed by aletter. In other words, it tests for the presence of at least one letter in the subject. If aletter is
found, the subject is matched against the fi rst alternative; otherwise it is matched against the second.
This pattern matches strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are letters and
dd are digits.

COMMENTS

30

The sequence (?# marks the start of a comment which continues up to the next closing parenthesis.
Nested parentheses are not permitted. The characters that make up a comment play no part in the pat-
tern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character classintroduces a

PCRE(3) PCRE(3)

comment that continues up to the next newline character in the pattern.

RECURSIVE PATTERNS
Consider the problem of matching a string in parentheses, alowing for unlimited nested parentheses.
Without the use of recursion, the best that can be done is to use a pattern that matches up to some fi xed
depth of nesting. It is not possible to handle an arbitrary nesting depth. Perl 5.6 has provided an experi-
mental facility that allows regular expressions to recurse (amongst other things). It does this by interpo-
lating Perl codein the expression at run time, and the code can refer to the expression itself. A Perl pat-
tern to solve the parentheses problem can be created like this:

$re=ar{\((7 (>[" 014) | (%p{$re}))* VX

The (7p{...}) item interpolates Perl code at run time, and in this case refers recursively to the pattern in
which it appears. Obviously, PCRE cannot support the interpolation of Perl code. Instead, the special

item (?R) is provided for the specifi ¢ case of recursion. This PCRE pattern solves the parentheses prob-
lem (assume the PCRE_EXTENDED option is set so that white space is ignored):

(> 01D 1(R)*Y)

First it matches an opening parenthesis. Then it matches any number of substrings which can either be
a sequence of non-parentheses, or a recursive match of the pattern itself (i.e. a correctly parenthesized
substring). Finaly there is a closing parenthesis.

This particular example pattern contains nested unlimited repeats, and so the use of a once-only subpat-

tern for matching strings of non-parentheses is important when applying the pattern to strings that do
not match. For example, when it is applied to

(

)

it yields "no match" quickly. However, if a once-only subpattern is not used, the match runs for a very
long time indeed because there are so many different ways the + and * repeats can carve up the subject,
and all have to be tested before failure can be reported.

The values set for any capturing subpatterns are those from the outermost level of the recursion at
which the subpattern value is set. If the pattern above is matched against

(ab(cd)ef)

the value for the capturing parentheses is "ef", which is the last value taken on at the top level. If addi-
tional parentheses are added, giving

\(CCET 01D TER)*)Y
- " the string they capture is "ab(cd)ef", the contents of the top level parentheses. If
there are more than 15 capturing parentheses in a pattern, PCRE has to obtain extra memory to store
data during a recursion, which it does by using pcre_malloc, freeing it via pcre_free afterwards. If no
memory can be obtained, it saves data for the fi rst 15 capturing parentheses only, as there is no way to
give an out-of-memory error from within arecursion.

PERFORMANCE
Certain items that may appear in patterns are more effi cient than others. It is more effi cient to use a
character class like [agiou] than a set of alternatives such as (alelijoju). In general, the simplest construc-
tion that provides the required behaviour is usually the most effi cient. Jeffrey Friedl’s book contains a
lot of discussion about optimizing regular expressions for effi cient performance.

When a pattern begins with .* and the PCRE_DOTALL option is set, the pattern is implicitly anchored

31

PCRE(3)

PCRE(3)

by PCRE, since it can match only at the start of a subject string. However, if PCRE_DOTALL is not
set, PCRE cannot make this optimization, because the . metacharacter does not then match a newline,
and if the subject string contains newlines, the pattern may match from the character immediately fol-
lowing one of them instead of from the very start. For example, the pattern

(-*) second

matches the subject "fi rst\nand second” (where \n stands for a newline character) with the fi rst captured
substring being "and". In order to do this, PCRE has to retry the match starting after every newline in
the subject.

If you are using such a pattern with subject strings that do not contain newlines, the best performance is
obtained by setting PCRE_DOTALL, or starting the pattern with ™ .* to indicate explicit anchoring. That
saves PCRE from having to scan along the subject looking for a newline to restart at.

Beware of patterns that contain nested indefi nite repeats. These can take a long time to run when
applied to a string that does not match. Consider the pattern fragment

(at)

This can match "aaaa" in 33 different ways, and this number increases very rapidly as the string gets
longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases other than 0O, the +
repeats can match different numbers of times.) When the remainder of the pattern is such that the entire
match is going to fail, PCRE has in principle to try every possible variation, and this can take an
extremely long time.

An optimization catches some of the more simple cases such as

(ah)*b
where aliteral character follows. Before embarking on the standard matching procedure, PCRE checks
that thereisa"b" later in the subject string, and if there is nat, it fails the match immediately. However,

when there is no following literal this optimization cannot be used. You can see the difference by com-
paring the behaviour of

(a+)*\d

with the pattern above. The former gives a failure amost instantly when applied to a whole line of "a"
characters, whereas the latter takes an appreciable time with strings longer than about 20 characters.

UTF-8 SUPPORT

32

Starting at release 3.3, PCRE has some support for character strings encoded in the UTF-8 format. This
isincomplete, and is regarded as experimental. In order to use it, you must confi gure PCRE to include
UTF-8 support in the code, and, in addition, you must call pcre compile() with the PCRE_UTF8
option flag. When you do this, both the pattern and any subject strings that are matched against it are
treated as UTF-8 strings instead of just strings of bytes, but only in the cases that are mentioned bel ow.

If you compile PCRE with UTF-8 support, but do not use it at run time, the library will be a bit bigger,
but the additional run time overhead is limited to testing the PCRE_UTF8 flg in severa places, so
should not be very large.

PCRE assumes that the strings it is given contain valid UTF-8 codes. It does not diagnose invalid
UTF-8 strings. If you passinvalid UTF-8 strings to PCRE, the results are undefi ned.

Running with PCRE_UTF8 set causes these changes in the way PCRE works:

1. In a pattern, the escape sequence \X{ ...}, where the contents of the braces is a string of hexadecimal

PCRE(3) PCRE(3)

digits, is interpreted as a UTF-8 character whose code number is the given hexadecimal number, for
example: \x{1234}. This inserts from one to six literal bytes into the pattern, using the UTF-8 encod-
ing. If anon-hexadecimal digit appears between the braces, the item is not recogni zed.

2. The original hexadecimal escape sequence, \xhh, generates a two-byte UTF-8 character if itsvalueis
greater than 127.

3. Repeat quantifi ers are NOT correctly handled if they follow a multibyte character. For example,
\x{ 100} * and \xc3+ do not work. If you want to repeat such characters, you must enclose them in non-
capturing parentheses, for example (?:\x{ 100}), at present.

4. The dot metacharacter matches one UTF-8 character instead of asingle byte.

5. Unlike literal UTF-8 characters, the dot metacharacter followed by a repeat quantifi er does operate
correctly on UTF-8 characters instead of single bytes.

4. Although the \x{ ...} escape is permitted in a character class, characters whose values are greater than
255 cannot be included in aclass.

5. A classis matched against a UTF-8 character instead of just asingle byte, but it can match only char-
acters whose values are |ess than 256. Characters with greater values always fail to match aclass.

6. Repeated classes work correctly on multiple characters.

7. Classes containing just a single character whose value is greater than 127 (but less than 256), for

example, [\x80] or [* \x{93}], do not work because these are optimized into single byte matches. In the
fi rst case, of course, the class brackets are just redundant.

8. Lookbehind assertions move backwards in the subject by a fi xed number of characters instead of a
fi xed number of bytes. Simple cases have been tested to work correctly, but there may be hidden

gotchas herein.

9. The character types such as\d and \w do not work correctly with UTF-8 characters. They continue to
test asingle byte.

10. Anything not explicitly mentioned here continues to work in bytes rather than in characters.
The following UTF-8 features of Perl 5.6 are not implemented:
1. The escape sequence \C to match asingle byte.

2. The use of Unicode tables and properties and escapes \p, \P, and \X.

SAMPLE PROGRAM
The code below is a simple, complete demonstration program, to get you started with using PCRE.
This codeis also supplied in the fi le pcredemo.c in the PCRE distribution.

The program compiles the regular expression that is its fi rst argument, and matches it against the sub-
ject string in its second argument. No options are set, and default character tables are used. If matching
succeeds, the program outputs the portion of the subject that matched, together with the contents of any
captured substrings.

On a Unix system that has PCRE installed in /usr/local, you can compile the demonstration program
using acommand like this:

gcc -o peredemo peredemo.c -1/usr/local/include -L/usr/local/lib -lpcre

33

PCRE(3) PCRE(3)

Then you can run simpletests like this:
pcredemo ' cat|dog’ 'the cat sat on the mat’

Note that there is a much more comprehensive test program, called pcretest, which supports many
more facilities for testing regular expressions. The pcredemo program is provided as a simple coding
example.

On some operating systems (e.g. Solaris) you may get an error like this when you try to run pcredemo:
Id.s0.1: a.out: fatal: libpcre.so.0: open failed: No such fi le or directory

Thisis caused by the way shared library support works on those systems. You need to add
-R/usr/local/lib

to the compile command to get round this problem. Here's the code:

#include <stdio.h>
#include <string.h>
#include <pcre.h>

#defi ne OVECCOUNT 30 /* should be amultiple of 3*/

int main(int argc, char **argv)
{

pcre *re;

const char *error;

int erroffset;

int ovectorf OVECCOUNT];
intrc, i;

if (argc!=3)
{

printf(" Two arguments required: aregex and a"
"subject string\n");
return 1,

}

[* Compile the regular expression in the fi rst argument */

re = pcre_compile(
argv[l], /* thepattern*/
(0} [* default options */
&error, /* for error message */
&erroffset, /* for error offset */
NULL); /* usedefault character tables*/

/* Compilation failed: print the error message and exit */

if (re==NULL)
{
printf("PCRE compilation failed at offset %d: %s\n",
erroffset, error);
return 1,

}

/* Compilation succeeded: match the subject in the second
argument */

PCRE(3) PCRE(3)

rc = pcre_exec(
re, [* the compiled pattern */
NULL, [* we didn’t study the pattern */
argv[2], [* the subject string */
(int)strlen(argv[2]), /* the length of the subject */
(0} [* start at offset 0 in the subject */
(0} [* default options */
ovector, /* vector for substring information */
OVECCOUNT); /* number of elementsin the vector */

/* Matching failed: handle error cases */

if (rc<0)

{

switch(rc)
{
case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
/*
Handle other special casesif you like
*/
default: printf("Matching error %d\n", rc); break;
}

return 1;

}

/* Match succeded */
printf("Match succeeded\n");
[* The output vector wasn't big enough */

if (rc==0)
{
rc = OVECCOUNT/3;
printf("ovector only has room for %d captured "
substrings\n", rc - 1);
}

[* Show substrings stored in the output vector */

for (i=0;i<rc; i++)
{
char *substring_start = argv[2] + ovector[2*i];
int substring_length = ovector[2*i+1] - ovector[2*i];
printf("%2d: %.*s\n", i, substring_length,
substring_start);
}

return O;
}

AUTHOR
Philip Hazel <phl0@cam.ac.uk>
University Computing Service,
New Museums Site,
Cambridge CB2 3QG, England.
Phone: +44 1223 334714

35

PCRE(3) PCRE(3)

Last updated: 15 August 2001
Copyright (c) 1997-2001 University of Cambridge.

36

PCRE(3) PCRE(3)

NAME
pcreposix - POSIX API for Perl-compatible regular expressions.

SYNOPSIS
#include <pcreposix.h>

int regcomp(regex_t *preg, const char *pattern,
int cflags);
int regexec(regex_t *preg, const char *string,
size_t nmatch, regmatch_t pmatch[], int eflags);

size t regerror(int errcode, const regex_t *preg,
char *errbuf, size t errbuf_size);

void regfree(regex_t *preg);

DESCRIPTION
This set of functions provides a POSIX-style APl to the PCRE regular expression package. See the
pcre documentation for a description of the native API, which contains additional functionality.

The functions described here are just wrapper functions that ultimately call the native API. Their proto-
types are defi ned in the pcreposix.h header file, and on Unix systems the library itself is caled
pcreposix.a, so can be accessed by adding -lpcreposix to the command for linking an application
which uses them. Because the POSI X functions call the native ones, it is also necessary to add -Ipcre.

| have implemented only those option bits that can be reasonably mapped to PCRE native options. In
addition, the options REG_EXTENDED and REG_NOSUB are defi ned with the value zero. They have
no effect, but since programs that are written to the POSIX interface often use them, this makes it eas-
ier to dot in PCRE as areplacement library. Other POSIX options are not even defi ned.

When PCRE is called viathese functions, it is only the API that is POSIX-like in style. The syntax and
semantics of the regular expressions themselves are still those of Perl, subject to the setting of various
PCRE options, as described below.

The header for these functions is supplied as pcreposix.h to avoid any potential clash with other
POSIX libraries. It can, of course, be renamed or aiased as regex.h, which is the "correct” name. It
provides two structure types, regex_t for compiled internal forms, and regmatch_t for returning cap-
tured substrings. It also defi nes some constants whose names start with "REG _"; these are used for set-
ting options and identifying error codes.

COMPILING A PATTERN
The function regcomp() is called to compile a pattern into an internal form. The pattern is a C string
terminated by a binary zero, and is passed in the argument pattern. The preg argument is a pointer to a
regex_t structure which is used as a base for storing information about the compiled expression.
The argument cflags is either zero, or contains one or more of the bits defi ned by the following macros:
REG_ICASE

The PCRE_CASELESS option is set when the expression is passed for compilation to the native func-
tion.

REG_NEWLINE

The PCRE_MULTILINE option is set when the expression is passed for compilation to the native func-
tion.

37

PCRE(3) PCRE(3)

In the absence of these flags, no options are passed to the native function. This means the the regex is

compiled with PCRE default semantics. In particular, the way it handles newline characters in the sub-
ject string is the Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only some of

the effects specifi ed for REG_NEWLINE. It does not affect the way newlines are matched by . (they
aren’t) or anegative classsuch as[” a] (they are).

The yield of regcomp() is zero on success, and non-zero otherwise. The preg structure is fi lled in on
success, and one member of the structure is publicized: re_nsub contains the number of capturing sub-
patterns in the regular expression. Various error codes are defi ned in the header fi le.

MATCHING A PATTERN

The function regexec() is caled to match a pre-compiled pattern preg against a given string, which is
terminated by a zero byte, subject to the options in eflags. These can be:

REG_NOTBOL
The PCRE_NOTBOL option is set when calling the underlying PCRE matching function.
REG_NOTEOL
The PCRE_NOTEOL option is set when calling the underlying PCRE matching function.
The portion of the string that was matched, and also any captured substrings, are returned via the
pmatch argument, which points to an array of nmatch structures of type regmatch t, containing the
members rm_so and rm_eo. These contain the offset to the fi rst character of each substring and the off-
set to the fi rst character after the end of each substring, respectively. The Oth element of the vector
relates to the entire portion of string that was matched; subsequent elements relate to the capturing sub-

patterns of the regular expression. Unused entries in the array have both structure members set to -1.

A successful match yields a zero return; various error codes are defi ned in the header fi le, of which
REG_NOMATCH isthe "expected" failure code.

ERROR MESSAGES

The regerror() function maps a non-zero errorcode from either regcomp or regexec to a printable
message. If preg is not NULL, the error should have arisen from the use of that structure. A message
terminated by abinary zero is placed in errbuf. The length of the message, including the zero, islimited
to errbuf_size. Theyield of the function is the size of buffer needed to hold the whole message.

STORAGE

Compiling a regular expression causes memory to be allocated and associated with the preg structure.
The function regfree() frees all such memory, after which preg may no longer be used as a compiled
expression.

AUTHOR

38

Philip Hazel <phl0@cam.ac.uk>
University Computing Service,
New Museums Site,

Cambridge CB2 3QG, England.
Phone: +44 1223 334714

Copyright (c) 1997-2000 University of Cambridge.

	PCREGREP (1)
	PCRETEST (1)
	PCRE (3)
	PCRE (3)

